
3. 1.2018 Abs Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Abs Function
See Also Example Specifics

Returns a value of the same type that is passed to it specifying the absolute value of a number.

Syntax

Abs(number)

The required number argument can be any valid numeric expression. If number contains Null, Null is returned; if it is an
uninitialized variable, zero is returned.

Remarks

The absolute value of a number is its unsigned magnitude. For example, ABS(-1) and ABS(1) both return 1.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262673(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa443343(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262674(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262673(v=vs.60).aspx

3. 1.2018 Abs Function Example

Visual Basic for Applications Reference

Abs Function Example
This example uses the Abs function to compute the absolute value of a number.

Dim MyNumber
MyNumber = A b s(5 0 .3) ' Returns 5 0 .3 .
MyNumber = A b s (-5 0 .3) ' Returns 5 0 .3 .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262674(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262674(v=vs.60).aspx

3. 1.2018 Array Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Array Function
See Also Example Specifics

Returns a Variant containing an array.

Syntax

Array(arglist)

The required arglist argument is a comma-delimited list of values that are assigned to the elements of the array contained
within the Variant. If no arguments are specified, an array of zero length is created.

Remarks

The notation used to refer to an element of an array consists of the variable name followed by parentheses containing an
index number indicating the desired element. In the following example, the first statement creates a variable named A as a
Variant. The second statement assigns an array to variable A. The last statement assigns the value contained in the second
array element to another variable.

Dim A As V a r ia n t
A = A rra y (1 0 ,2 0 ,3 0)
B = A (2)

The lower bound of an array created using the A rray function is determined by the lower bound specified with the Option
Base statement, unless A rray is qualified with the name of the type library (for example VBA.Array). If qualified with the
type-library name, A rray is unaffected by Option Base.

Note A Variant that is not declared as an array can still contain an array. A Variant variable can contain an array of any
type, except fixed-length strings and user-defined types. Although a Variant containing an array is conceptually different
from an array whose elements are of type Variant, the array elements are accessed in the same way.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262675(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa443344(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262677(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa219965.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa212247.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262675(v=vs.60).aspx

3. 1.2018 Array Function Example

Visual Basic for Applications Reference

Array Function Example
This example uses the A rray function to return a Variant containing an array.

Dim MyWeek, MyDay
MyWeek = A rray("M on", "Tu e", "Wed", "Thu", " F r i " , " S a t " , "Sun")
' Return va lu e s assume lower bound se t to 1 (u s in g Option Base
' s ta te m e n t).
MyDay = MyWeek(2) ' MyDay co n ta in s "Tue".
MyDay = MyWeek(4) ' MyDay co n ta in s "Thu".

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262677(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262677(v=vs.60).aspx

3. 1.2018 Asc Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Asc Function
See Also Example Specifics

Returns an Integer representing the character code corresponding to the first letter in a string.

Syntax

Asc(string)

The required string argument is any valid string expression. If the string contains no characters, a run-time error occurs.

Remarks

The range for returns is 0 255 on non-DBCS systems, but 32768 32767 on DBCS systems.

Note The AscB function is used with byte data contained in a string. Instead of returning the character code for the first
character, AscB returns the first byte. The AscW function returns the Unicode character code except on platforms where
Unicode is not supported, in which case, the behavior is identical to the Asc function.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262678(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa443346(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262679(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa220300.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262678(v=vs.60).aspx

3. 1.2018 Asc Function Example

Visual Basic for Applications Reference

Asc Function Example
This example uses the Asc function to return a character code corresponding to the first letter in the string.

Dim MyNumber
MyNumber = A sc ("A ") ' Returns 65.
MyNumber = A s c (" a ") ' Returns 97.
MyNumber = A sc ("A p p le ") ' Returns 65.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262679(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262679(v=vs.60).aspx

3. 1.2018 Atn Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Atn Function
See Also Example Specifics

Returns a Double specifying the arctangent of a number.

Syntax

Atn(number)

The required number argument is a Double or any valid numeric expression.

Remarks

The Atn function takes the ratio of two sides of a right triangle (number) and returns the corresponding angle in radians. The
ratio is the length of the side opposite the angle divided by the length of the side adjacent to the angle.

The range of the result is -pi/2 to pi/2 radians.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply radians by 180/pi.

Note Atn is the inverse trigonometric function of Tan, which takes an angle as its argument and returns the ratio of two
sides of a right triangle. Do not confuse Atn with the cotangent, which is the simple inverse of a tangent (1/tangent).

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262680(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa443347(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262681(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262680(v=vs.60).aspx

3. 1.2018 Atn Function Example

Visual Basic for Applications Reference

Atn Function Example
This example uses the Atn function to calculate the value of pi.

Dim p i
p i = 4 * A tn (1) ' C a lc u la te the va lu e o f p i .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262681(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262681(v=vs.60).aspx

3. 1.2018 CallByName Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

CallByName Function
See Also Example Specifics

Executes a method of an object, or sets or returns a property of an object.

Syntax

CallByName(object, procname, calltype,[args()])

The CallByNam e function syntax has these named arguments:

Part Description

object Required; Variant (Object). The name of the object on which the function will be executed.

procname Required; Variant (String). A string expression containing the name of a property or method of the object.

calltype Required; Constant. A constant of type vbCallType representing the type of procedure being called.

args() Optional: Variant (Array).

Remarks

The CallByNam e function is used to get or set a property, or invoke a method at run time using a string name.

In the following example, the first line uses CallByName to set the M ousePointer property of a text box, the second line
gets the value of the MousePointer property, and the third line invokes the Move method to move the text box:

CallByName T e x t1 , "M ousePointer", vb Le t, vb C ro ssh a ir
R e su lt = CallByName (T e x t1 , "M ousePointer", vbGet)
CallByName T e x t1 , "Move", vbMethod, 100, 100

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262682(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262682(v=vs.60).aspx

3. 1.2018 Choose Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Choose Function
See Also Example Specifics

Selects and returns a value from a list of arguments.

Syntax

Choose(index, choice-1[, choice-2,... [, choice-n]])

The Choose function syntax has these parts:

Part Description

index Required. Numeric expression or field that results in a value between 1 and the number of available choices.

choice Required. Variant expression containing one of the possible choices.

Remarks

Choose returns a value from the list of choices based on the value of index. If index is 1, Choose returns the first choice in the
list; if index is 2, it returns the second choice, and so on.

You can use Choose to look up a value in a list of possibilities. For example, if index evaluates to 3 and choice-1 = "one",
choice-2 = "two", and choice-3 = "three", Choose returns "three". This capability is particularly useful if index represents the
value in an option group.

Choose evaluates every choice in the list, even though it returns only one. For this reason, you should watch for undesirable
side effects. For example, if you use the M sgBox function as part of an expression in all the choices, a message box will be
displayed for each choice as it is evaluated, even though Choose returns the value of only one of them.

The Choose function returns a Null if index is less than 1 or greater than the number of choices listed.

If index is not a whole number, it is rounded to the nearest whole number before being evaluated.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262690(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa443348(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262691(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262690(v=vs.60).aspx

3. 1.2018 Choose Function Example

Visual Basic for Applications Reference

Choose Function Example
This example uses the Choose function to display a name in response to an index passed into the procedure in the Ind
parameter.

Function G etCho ice(Ind As In te g e r)
GetChoice = Choose(Ind , "Speedy", "U n ite d " , " F e d e ra l")

End Function

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262691(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262691(v=vs.60).aspx

3. 1.2018 Chr Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Chr Function
See Also Example Specifics

Returns a String containing the character associated with the specified character code.

Syntax

Chr(charcode)

The required charcode argument is a Long that identifies a character.

Remarks

Numbers from 0 31 are the same as standard, nonprintable ASCII codes. For example, Chr(10) returns a linefeed character.
The normal range for charcode is 0 255. However, on DBCS systems, the actual range for charcode is -32768 to 65535.

Note The ChrB function is used with byte data contained in a String. Instead of returning a character, which may be one or
two bytes, ChrB always returns a single byte. The ChrW function returns a String containing the Unicode character except
on platforms where Unicode is not supported, in which case, the behavior is identical to the Chr function.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262692(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa443350(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262693(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212271.aspx
https://msdn.microsoft.com/en-us/library/aa220300.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262692(v=vs.60).aspx

3. 1.2018 Chr Function Example

Visual Basic for Applications Reference

Chr Function Example
This example uses the Chr function to return the character associated with the specified character code.

Dim MyChar
MyChar = C h r(6 5) ' Returns A.
MyChar = C h r(9 7) ' Returns a .
MyChar = C h r(6 2) ' Returns >.
MyChar = C h r(3 7) ' Returns %.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262693(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262693(v=vs.60).aspx

3. 1.2018 Command Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Command Function
See Also Example Specifics

Returns the argument portion of the command line used to launch Microsoft Visual Basic or an executable program
developed with Visual Basic.

Syntax

Command

Remarks

When Visual Basic is launched from the command line, any portion of the command line that follows /cmd is passed to the
program as the command-line argument. In the following example, cm dlineargs represents the argument information
returned by the Command function.

VB /cmd cm dlineargs

For applications developed with Visual Basic and compiled to an .exe file, Command returns any arguments that appear after
the name of the application on the command line. For example:

MyApp cm dlineargs

To find how command line arguments can be changed in the user interface of the application you're using, search Help for
"command line arguments."

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262696(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa262697(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa210353.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262696(v=vs.60).aspx

3. 1.2018 Command Function Example

Visual Basic for Applications Reference

Command Function Example
This example uses the Command function to get the command line arguments in a function that returns them in a Variant
containing an array.

Function GetCommandLine(Optional MaxArgs)
'D ec la re v a r ia b le s .
Dim C, CmdLine, CmdLnLen, In A rg , I , NumArgs
'See i f MaxArgs was p rovided .
I f IsM issing (M axA rgs) Then MaxArgs = 10
'Make a rra y o f the c o rre c t s iz e .
ReDim ArgArray(M axArgs)
NumArgs = 0 : InA rg = F a lse
'Get command l in e arguments.
CmdLine = Command()
CmdLnLen = Len(CmdLine)
'Go th ru command l in e one ch a ra c te r
'a t a t im e .
For I = 1 To CmdLnLen

C = Mid(CmdLine, I , 1)
'T e s t fo r space or ta b .
I f (C <> " " And C <> vbTab) Then

'N e ith e r space nor ta b .
'T e s t i f a lre ad y in argument.
I f Not InArg Then
'New argument b eg ins .
'T e s t fo r too many arguments.

I f NumArgs = MaxArgs Then E x it For
NumArgs = NumArgs + 1
InArg = True

End I f
'Concatenate c h a ra c te r to cu rre n t argument.
ArgArray(NumArgs) = ArgArray(NumArgs) & C

E lse
'Found a space or ta b .
'S e t InArg f la g to F a ls e .
InArg = Fa lse

End I f
Next I
'R e s ize a rra y ju s t enough to hold arguments.
ReDim P reserve ArgArray(NumArgs)
'Return A rray in Function name.
GetCommandLine = A rg A rra y ()

End Function

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262697(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262697(v=vs.60).aspx

3. 1.2018 Cos Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Cos Function
See Also Example Specifics

Returns a Double specifying the cosine of an angle.

Syntax

Cos(number)

The required number argument is a Double or any valid numeric expression that expresses an angle in radians.

Remarks

The Cos function takes an angle and returns the ratio of two sides of a right triangle. The ratio is the length of the side
adjacent to the angle divided by the length of the hypotenuse.

The result lies in the range -1 to 1.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply radians by 180/pi.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262698(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa443352(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262699(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262698(v=vs.60).aspx

3. 1.2018 Cos Function Example

Visual Basic for Applications Reference

Cos Function Example
This example uses the Cos function to return the cosine of an angle.

Dim MyAngle, MySecant
MyAngle = 1 .3 ' D efine angle in ra d ia n s .
MySecant = 1 / Cos(MyAngle) ' C a lc u la te se can t.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262699(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262699(v=vs.60).aspx

3. 1.2018 CreateObject Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

CreateObject Function
See Also Example Specifics

Creates and returns a reference to an ActiveX object.

Syntax

CreateObject(class,[servemame])

The CreateObject function syntax has these parts:

Part Description

class Required; Variant (String). The application name and class of the object to create.

servername Optional; Variant (String). The name of the network server where the object will be created. If servername
is an empty string (""), the local machine is used.

The class argument uses the syntax appname.objecttype and has these parts:

Part Description

appname Required; Variant (String). The name of the application providing the object.

objecttype Required; Variant (String). The type or class of object to create.

Remarks

Every application that supports Automation provides at least one type of object. For example, a word processing application
may provide an Application object, a Document object, and a Toolbar object.

To create an ActiveX object, assign the object returned by CreateObject to an object variable:

' D ecla re an o b je c t v a r ia b le to hold the o b ject
' re fe re n c e . Dim as O bject causes la te b in d in g .
Dim Exce lSheet As O bject
Set Exce lSheet = C re a te O b je c t("E x c e l.S h e e t")

https://msdn.microsoft.com/en-us/Nbrary/aa262700(v=vs.60).aspx 1/3

https://msdn.microsoft.com/en-us/library/aa443353(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262701(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa220050.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262700(v=vs.60).aspx

3. 1.2018 CreateObject Function

This code starts the application creating the object, in this case, a Microsoft Excel spreadsheet. Once an object is created, you
reference it in code using the object variable you defined. In the following example, you access properties and methods of
the new object using the object variable, Exce lSheet, and other Microsoft Excel objects, including the A p p lica t io n object
and the C e lls collection.

' Make E xce l v i s ib le through the A p p lica t io n o b je c t .
E x c e lS h e e t .A p p lic a t io n .V is ib le = True
' P lace some te x t in the f i r s t c e l l o f the sh ee t.
E x c e lS h e e t .A p p lic a t io n .C e lls (1 , 1) .V a lu e = "T h is i s column A, row 1"
' Save the sheet to C : \ t e s t . x l s d ire c to ry .
Exce lSh eet.SaveA s "C :\T E S T .X LS "
' C lose E xce l w ith the Q uit method on the A p p lica t io n o b je c t .
E x c e lS h e e t .A p p lic a t io n .Q u it
' Release the o b ject v a r ia b le .
Set Exce lSheet = Nothing

Declaring an object variable with the As O bject clause creates a variable that can contain a reference to any type of object.
However, access to the object through that variable is late bound; that is, the binding occurs when your program is run. To
create an object variable that results in early binding, that is, binding when the program is compiled, declare the object
variable with a specific class ID. For example, you can declare and create the following Microsoft Excel references:

Dim xlApp As E x c e l.A p p lic a t io n
Dim xlBook As Excel.W orkbook
Dim x lS h e e t As Excel.W orkSheet
Set xlApp = C re a te O b je c t ("E x c e l.A p p lic a t io n ")
Set x lBook = xlApp.Workbooks.Add
Set x lS h e e t = x lBo ok .W orksheets(1)

The reference through an early-bound variable can give better performance, but can only contain a reference to the class
specified in the declaration.

You can pass an object returned by the CreateObject function to a function expecting an object as an argument. For
example, the following code creates and passes a reference to a Excel.Application object:

C a l l MySub (C re a te O b je c t ("E x c e l.A p p lic a t io n "))

You can create an object on a remote networked computer by passing the name of the computer to the servername
argument of CreateObject. That name is the same as the Machine Name portion of a share name: for a share named
"\\MyServer\Public," servername is "MyServer."

Note Refer to COM documentation (see Microsoft Developer Network) for additional information on making an application
visible on a remote networked computer. You may have to add a registry key for your application.

The following code returns the version number of an instance of Excel running on a remote computer named MyServer:

Dim xlApp As O bject
Set xlApp = C re a te O b je c t ("E x c e l.A p p lic a t io n " , "M yServer")
D ebug .P rin t x lA p p .V e rs io n

If the remote server doesnt exist or is unavailable, a run-time error occurs.

Note Use CreateObject when there is no current instance of the object. If an instance of the object is already running, a
new instance is started, and an object of the specified type is created. To use the current instance, or to start the application
and have it load a file, use the GetObject function.

If an object has registered itself as a single-instance object, only one instance of the object is created, no matter how many
times CreateObject is executed.

https://msdn.microsoft.com/en-us/Nbrary/aa262700(v=vs.60).aspx 2/3

https://msdn.microsoft.com/en-us/library/aa172196.aspx
https://msdn.microsoft.com/en-us/library/aa171675.aspx
https://msdn.microsoft.com/en-us/library/aa220050.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262700(v=vs.60).aspx

3. 1.2018 CreateObject Function Example

Visual Basic for Applications Reference

CreateObject Function Example
This example uses the CreateObject function to set a reference (xlApp) to Microsoft Excel. It uses the reference to access the
V isible property of Microsoft Excel, and then uses the Microsoft Excel Quit method to close it. Finally, the reference itself is
released.

Dim xlApp As O bject ' D ecla re v a r ia b le to hold the re fe re n c e .

Set xlApp = C re a te O b je c tC 'e x c e l.a p p lic a t io n ")
' You may have to se t V is ib le p ro p erty to True
' i f you want to see the a p p lic a t io n .

x lA p p .V is ib le = True
' Use xlApp to access M icro so ft E x c e l 's
' o ther o b je c ts .

x lA p p .Q u it ' When you f in i s h , use the Q uit method to c lo se
Set xlApp = Nothing ' the a p p lic a t io n , then re le a se the re fe re n c e .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262701(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262701(v=vs.60).aspx

3. 1.2018 CurDir Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

CurDir Function
See Also Example Specifics

Returns a Variant (String) representing the current path.

Syntax

CurDir[(drive)]

The optional drive argument is a string expression that specifies an existing drive. If no drive is specified or if drive is a zero-
length string (""), CurDir returns the path for the current drive.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa262704(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa443355(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262705(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa262704(v=vs.60).aspx

3. 1.2018 CurDir Function Example

Visual Basic for Applications Reference

CurDir Function Example
This example uses the CurDir function to return the current path.

' Assume cu rre n t path on C d r iv e i s "C:\WINDOWS\SYSTEM" .
' Assume cu rre n t path on D d r iv e i s "D :\EX C EL" .
' Assume C i s the cu rre n t d r iv e .
Dim MyPath
MyPath = C u rD ir ' Returns "C:\WINDOWS\SYSTEM".
MyPath = C u rD ir ("C ") ' Returns "C:\WINDOWS\SYSTEM".
MyPath = C u rD ir ("D ") ' Returns "D :\EX C EL" .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa262705(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa262705(v=vs.60).aspx

3. 1.2018 CVErr Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

CVErr Function
See Also Example Specifics

Returns a Variant of subtype Error containing an error number specified by the user.

Syntax

CVErr(errornumber)

The required errornumber argument is any valid error number.

Remarks

Use the CVErr function to create user-defined errors in user-created procedures. For example, if you create a function that
accepts several arguments and normally returns a string, you can have your function evaluate the input arguments to ensure
they are within acceptable range. If they are not, it is likely your function will not return what you expect. In this event, CVErr
allows you to return an error number that tells you what action to take.

Note that implicit conversion of an Error is not allowed. For example, you can't directly assign the return value of CVErr to a
variable that is not a Variant. However, you can perform an explicit conversion (using CInt, CDbl, and so on) of the value
returned by CVErr and assign that to a variable of the appropriate data type.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262707(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa443357(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262708(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262707(v=vs.60).aspx

3. 1.2018 CVErr Function Example

Visual Basic for Applications Reference

CVErr Function Example
This example uses the CVErr function to return a Variant whose VarType is vbError (10). The user-defined function
Ca lcu la teD oub le returns an error if the argument passed to it isn't a number. You can use CVErr to return user-defined
errors from user-defined procedures or to defer handling of a run-time error. Use the IsError function to test if the value
represents an error.

' C a l l Ca lcu la teD oub le w ith an e rro r-p ro d u c in g argument.
Sub T e s t ()

D ebug .P rin t C a lcu la te D o u b le ("3 4 5 .4 5 ro b e rt")
End Sub
' D efine Ca lcu la teD oub le Function procedure.
Function CalculateDouble(Num ber)

I f IsNumeric(Number) Then
Calcu lateD oub le = Number * 2 ' Return r e s u l t .

E lse
Calcu lateD oub le = C V Err(2001) ' Return a u se r-d e fin ed e r ro r

End I f ' number.
End Function

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262708(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262708(v=vs.60).aspx

3. 1.2018 Date Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Date Function
See Also Example Specifics

Returns a Variant (Date) containing the current system date.

Syntax

Date

Remarks

To set the system date, use the Date statement.

Date, and if the calendar is Gregorian, Date$ behavior is unchanged by the Calendar property setting. If the calendar is Hijri,
Date$ returns a 10-character string of the form mm-dd-yyyy, where mm (01-12), dd (01-30) and yyyy (1400-1523) are the
Hijri month, day and year. The equivalent Gregorian range is Jan 1, 1980 through Dec 31, 2099.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262709(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa443360(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262721(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262709(v=vs.60).aspx

3. 1.2018 Date Function Example

Visual Basic for Applications Reference

Date Function Example
This example uses the Date function to return the current system date.

Dim MyDate
MyDate = Date ' MyDate co n ta in s the cu rre n t system d a te .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262721(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262721(v=vs.60).aspx

3. 1.2018 DateAdd Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

DateAdd Function
See Also Example Specifics

Returns a Variant (Date) containing a date to which a specified time interval has been added.

Syntax

DateAdd(interval, number, date)

The DateAdd function syntax has these named arguments:

Part Description

interval Required. String expression that is the interval of time you want to add.

number Required. Numeric expression that is the number of intervals you want to add. It can be positive (to get dates
in the future) or negative (to get dates in the past).

date Required. Variant (Date) or literal representing date to which the interval is added.

Settings

The interval argument has these settings:

Setting Description

yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday

ww Week

https://msdn.microsoft.com/en-us/Nbrary/aa262710(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa443358(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262711(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262710(v=vs.60).aspx

3. 1.2018 DateAdd Function

Hour

n Minute

s Second

h

Remarks

You can use the DateAdd function to add or subtract a specified time interval from a date. For example, you can use
DateAdd to calculate a date 30 days from today or a time 45 minutes from now.

To add days to date, you can use Day of Year ("y"), Day ("d"), or Weekday ("w").

The DateAdd function won't return an invalid date. The following example adds one month to January 31:

DateAdd("m", 1 , "31 -Jan -9 5 ")

In this case, DateAdd returns 28-Feb-95, not 31-Feb-95. If date is 31-Jan-96, it returns 29-Feb-96 because 1996 is a leap
year.

If the calculated date would precede the year 100 (that is, you subtract more years than are in date), an error occurs.

If number isn't a Long value, it is rounded to the nearest whole number before being evaluated.

Note The format of the return value for DateAdd is determined by Control Panel settings, not by the format that is passed
in date argument.

Note For date, if the Calendar property setting is Gregorian, the supplied date must be Gregorian. If the calendar is Hijri,
the supplied date must be Hijri. If month values are names, the name must be consistent with the current Calendar property
setting. To minimize the possibility of month names conflicting with the current Calendar property setting, enter numeric
month values (Short Date format).

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262710(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/Nbrary/aa262710(v=vs.60).aspx

3. 1.2018 DateAdd Function Example

Visual Basic for Applications Reference

DateAdd Function Example
This example takes a date and, using the DateAdd function, displays a corresponding date a specified number of months in
the future.

Dim F ir s tD a te As Date ' D ecla re v a r ia b le s .
Dim In te rv a lT y p e As S tr in g
Dim Number As In te g e r
Dim Msg
In te rv a lT y p e = "m..................m" s p e c if ie s months as in t e r v a l .
F ir s tD a te = In p u tB o x ("E n te r a d a te ")
Number = In p u tB o x ("E n te r number o f months to add")
Msg = "New d a te : " & D ateA d d (In te rva lTyp e , Number, F ir s tD a te)
MsgBox Msg

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262711(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262711(v=vs.60).aspx

3. 1.2018 DateDiff Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

DateDiff Function
See Also Example Specifics

Returns a Variant (Long) specifying the number of time intervals between two specified dates.

Syntax

DateDiff(interval, datel, date2[, firstdayofweek[, firstweekofyear]])

The DateDiff function syntax has these named arguments:

Part Description

interval Required. String expression that is the interval of time you use to calculate the difference between
datel and date2.

datel, date2 Required; Variant (Date). Two dates you want to use in the calculation.

firstdayofweek Optional. A constant that specifies the first day of the week. If not specified, Sunday is assumed.

firstweekofyear Optional. A constant that specifies the first week of the year. If not specified, the first week is assumed
to be the week in which January 1 occurs.

Settings

The interval argument has these settings:

Setting Description

yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday

https://msdn.microsoft.com/en-us/Nbrary/aa262712(v=vs.60).aspx 1/3

https://msdn.microsoft.com/en-us/library/aa443362(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262713(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa210373.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262712(v=vs.60).aspx

3. 1.2018 DateDiff Function

ww Week

h Hour

n Minute

s Second

The firstdayofweek argument has these settings:

Constant Value Description

vbUseSystem 0 Use the NLS API setting.

vbSunday 1 Sunday (default)

vbM onday 2 Monday

vbTuesday 3 Tuesday

vbW ednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

Constant Value Description

vbUseSystem 0 Use the NLS API setting.

vbFirstJan1 1 Start with week in which January 1 occurs (default).

vbFirstFourDays 2 Start with the first week that has at least four days in the new year.

vbFirstFullW eek 3 Start with first full week of the year.

Remarks

You can use the DateDiff function to determine how many specified time intervals exist between two dates. For example,
you might use DateDiff to calculate the number of days between two dates, or the number of weeks between today and the
end of the year.

To calculate the number of days between datel and date2, you can use either Day of year ("y") or Day ("d"). When interval
is Weekday ("w"), DateDiff returns the number of weeks between the two dates. If datel falls on a Monday, DateDiff counts
the number of Mondays until date2. It counts date2 but not datel. If interval is Week ("ww"), however, the DateDiff

https://msdn.microsoft.com/en-us/Nbrary/aa262712(v=vs.60).aspx 2/3

https://msdn.microsoft.com/en-us/Nbrary/aa262712(v=vs.60).aspx

3. 1.2018 DateDiff Function

function returns the number of calendar weeks between the two dates. It counts the number of Sundays between datel and
date2. DateDiff counts date2 if it falls on a Sunday; but it doesn't count datel, even if it does fall on a Sunday.

If datel refers to a later point in time than date2, the DateDiff function returns a negative number.

The firstdayofweek argument affects calculations that use the "w" and "ww" interval symbols.

If datel or date2 is a date literal, the specified year becomes a permanent part of that date. However, if datel or date2 is
enclosed in double quotation marks (" "), and you omit the year, the current year is inserted in your code each time the
datel or date2 expression is evaluated. This makes it possible to write code that can be used in different years.

When comparing December 31 to January 1 of the immediately succeeding year, DateDiff for Year ("yyyy") returns 1 even
though only a day has elapsed.

Note For datel and date2, if the Calendar property setting is Gregorian, the supplied date must be Gregorian. If the
calendar is Hijri, the supplied date must be Hijri.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa262712(v=vs.60).aspx 3/3

https://msdn.microsoft.com/en-us/library/aa262712(v=vs.60).aspx

3. 1.2018 DateDiff Function Example

Visual Basic for Applications Reference

DateDiff Function Example
This example uses the DateDiff function to display the number of days between a given date and today.

Dim TheDate As Date ' D ecla re v a r ia b le s .
Dim Msg
TheDate = In p u tB o x ("E n te r a d a te ")
Msg = "Days from today : " & D a te D if f ("d " , Now, TheDate)
MsgBox Msg

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262713(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262713(v=vs.60).aspx

3. 1.2018 DatePart Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

DatePart Function
See Also Example Specifics

Returns a Variant (Integer) containing the specified part of a given date.

Syntax

DatePart(interval, date\Jfirstdayofweek\J firstweekofyear]])

The DatePart function syntax has these named arguments:

Part Description

interval Required. String expression that is the interval of time you want to return.

date Required. Variant (Date) value that you want to evaluate.

firstdayofweek Optional. A constant that specifies the first day of the week. If not specified, Sunday is assumed.

firstweekofyear Optional. A constant that specifies the first week of the year. If not specified, the first week is assumed
to be the week in which January 1 occurs.

Settings

The interval argument has these settings:

Setting Description

yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday

https://msdn.microsoft.com/en-us/library/aa262714(v=vs.60).aspx 1/3

https://msdn.microsoft.com/en-us/library/aa443365(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262715(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa210373.aspx
https://msdn.microsoft.com/en-us/library/aa262714(v=vs.60).aspx

3. 1.2018 DatePart Function

ww Week

h Hour

n Minute

s Second

The firstdayofweek argument has these settings:

Constant Value Description

vbUseSystem 0 Use the NLS API setting.

vbSunday 1 Sunday (default)

vbM onday 2 Monday

vbTuesday 3 Tuesday

vbW ednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

The firstweekofyear argument has these settings:

Constant Value Description

vbUseSystem 0 Use the NLS API setting.

vbFirstJan1 1 Start with week in which January 1 occurs (default).

vbFirstFourDays 2 Start with the first week that has at least four days in the new year.

vbFirstFullW eek 3 Start with first full week of the year.

Remarks

You can use the DatePart function to evaluate a date and return a specific interval of time. For example, you might use
DatePart to calculate the day of the week or the current hour.

The firstdayofweek argument affects calculations that use the "w" and "ww" interval symbols.

https://msdn.microsoft.com/en-us/Nbrary/aa262714(v=vs.60).aspx 2/3

https://msdn.microsoft.com/en-us/Nbrary/aa262714(v=vs.60).aspx

3. 1.2018 DatePart Function

If date is a date literal, the specified year becomes a permanent part of that date. However, if date is enclosed in double
quotation marks (" "), and you omit the year, the current year is inserted in your code each time the date expression is
evaluated. This makes it possible to write code that can be used in different years.

Note For date, if the Calendar property setting is Gregorian, the supplied date must be Gregorian. If the calendar is Hijri,
the supplied date must be Hijri.

The returned date part is in the time period units of the current Arabic calendar. For example, if the current calendar is Hijri
and the date part to be returned is the year, the year value is a Hijri year.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa262714(v=vs.60).aspx 3/3

https://msdn.microsoft.com/en-us/library/aa262714(v=vs.60).aspx

3. 1.2018 DatePart Function Example

Visual Basic for Applications Reference

DatePart Function Example
This example takes a date and, using the DatePart function, displays the quarter of the year in which it occurs.

Dim TheDate As Date ' D ecla re v a r ia b le s .
Dim Msg
TheDate = In p u tB o x ("E n te r a d a te :")
Msg = "Q u a rte r: " & D a te P a rt ("q " , TheDate)
MsgBox Msg

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa262715(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa262715(v=vs.60).aspx

3. 1.2018 DateSerial Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

DateSerial Function
See Also Example Specifics

Returns a Variant (Date) for a specified year, month, and day.

Syntax

DateSerial(year, month, day)

The DateSerial function syntax has these named arguments:

Part Description

year Required; Integer. Number between 100 and 9999, inclusive, or a numeric expression.

month Required; Integer. Any numeric expression.

day Required; Integer. Any numeric expression.

Remarks

To specify a date, such as December 31, 1991, the range of numbers for each DateSerial argument should be in the
accepted range for the unit; that is, 131 for days and 112 for months. However, you can also specify relative dates for each
argument using any numeric expression that represents some number of days, months, or years before or after a certain
date.

The following example uses numeric expressions instead of absolute date numbers. Here the DateSerial function returns a
date that is the day before the first day (1 - 1), two months before August (8 - 2), 10 years before 1990 (1990 - 10); in
other words, May 31, 1980.

D a te S e ria l(1 9 9 0 - 10, 8 - 2 , 1 - 1)

Under Windows 98 or Windows 2000, two digit years for the year argument are interpreted based on user-defined machine
settings. The default settings are that values between 0 and 29, inclusive, are interpreted as the years 20002029. The default
values between 30 and 99 are interpreted as the years 19301999. For all other year arguments, use a four-digit year (for
example, 1800).

Earlier versions of Windows interpret two-digit years based on the defaults described above. To be sure the function returns
the proper value, use a four-digit year.

When any argument exceeds the accepted range for that argument, it increments to the next larger unit as appropriate. For
example, if you specify 35 days, it is evaluated as one month and some number of days, depending on where in the year it is

https://msdn.microsoft.com/en-us/Nbrary/aa262716(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa443366(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262718(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262716(v=vs.60).aspx

3. 1.2018 DateSerial Function

applied. If any single argument is outside the range -32,768 to 32,767, an error occurs. If the date specified by the three
arguments falls outside the acceptable range of dates, an error occurs.

Note For year, month, and day, if the Calendar property setting is Gregorian, the supplied value is assumed to be
Gregorian. If the Calendar property setting is Hijri, the supplied value is assumed to be Hijri.

The returned date part is in the time period units of the current Visual Basic calendar. For example, if the current calendar is
Hijri and the date part to be returned is the year, the year value is a Hijri year. For the argument year, values between 0 and
99, inclusive, are interpreted as the years 1400-1499. For all other year values, use the complete four-digit year (for example,
1520).

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262716(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/Nbrary/aa262716(v=vs.60).aspx

3. 1.2018 DateSerial Function Example

Visual Basic for Applications Reference

DateSerial Function Example
This example uses the DateSerial function to return the date for the specified year, month, and day.

Dim MyDate
' MyDate co n ta in s the date fo r February 12, 1969.
MyDate = D a te S e r ia l(1 9 6 9 , 2 , 12) ' Return a d a te .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262718(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262718(v=vs.60).aspx

3. 1.2018 DateValue Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

DateValue Function
See Also Example Specifics

Returns a Variant (Date).

Syntax

DateValue(date)

The required date argument is normally a string expression representing a date from January 1, 100 through December 31,
9999. However, date can also be any expression that can represent a date, a time, or both a date and time, in that range.

Remarks

If date is a string that includes only numbers separated by valid date separators, DateValue recognizes the order for month,
day, and year according to the Short Date format you specified for your system. DateValue also recognizes unambiguous
dates that contain month names, either in long or abbreviated form. For example, in addition to recognizing 12/30/1991 and
12/30/91, DateValue also recognizes December 30, 1991 and Dec 30, 1991.

If the year part of date is omitted, DateValue uses the current year from your computer's system date.

If the date argument includes time information, DateValue doesn't return it. However, if date includes invalid time
information (such as "89:98"), an error occurs.

Note For date, if the Calendar property setting is Gregorian, the supplied date must be Gregorian. If the calendar is Hijri,
the supplied date must be Hijri. If the supplied date is Hijri, the argument date is a String representing a date from 1/1/100
(Gregorian Aug 2, 718) through 4/3/9666 (Gregorian Dec 31, 9999).

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262719(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa443368(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262720(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262719(v=vs.60).aspx

3. 1.2018 DateValue Function Example

Visual Basic for Applications Reference

DateValue Function Example
This example uses the DateValue function to convert a string to a date. You can also use date literals to directly assign a
date to a Variant or Date variable, for example, MyDate = #2/12/69#.

Dim MyDate
MyDate = D ateV a lue ("Feb ruary 12, 1969") Return a d a te .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262720(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262720(v=vs.60).aspx

3. 1.2018 Day Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Day Function
See Also Example Specifics

Returns a Variant (Integer) specifying a whole number between 1 and 31, inclusive, representing the day of the month.

Syntax

Day(date)

The required date argument is any Variant, numeric expression, string expression, or any combination, that can represent a
date. If date contains Null, Null is returned.

Note If the Calendar property setting is Gregorian, the returned integer represents the Gregorian day of the month for the
date argument. If the calendar is Hijri, the returned integer represents the Hijri day of the month for the date argument.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262722(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa443371(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262723(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262722(v=vs.60).aspx

3. 1.2018 Day Function Example

Visual Basic for Applications Reference

Day Function Example
This example uses the Day function to obtain the day of the month from a specified date. In the development environment,
the date literal is displayed in short format using the locale settings of your code.

Dim MyDate, MyDay
MyDate = #February 12, 1969# ' A ssign a d a te .
MyDay = Day(MyDate) ' MyDay co n ta in s 12.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262723(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262723(v=vs.60).aspx

3. 1.2018 DDB Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

DDB Function
See Also Example Specifics

Returns a Double specifying the depreciation of an asset for a specific time period using the double-declining balance
method or some other method you specify.

Syntax

DDB(cost, salvage, life, period[, factor])

The DDB function has these named arguments:

Part Description

cost Required. Double specifying initial cost of the asset.

salvage Required. Double specifying value of the asset at the end of its useful life.

life Required. Double specifying length of useful life of the asset.

period Required. Double specifying period for which asset depreciation is calculated.

factor Optional. Variant specifying rate at which the balance declines. If omitted, 2 (double-declining method) is
assumed.

Remarks

The double-declining balance method computes depreciation at an accelerated rate. Depreciation is highest in the first
period and decreases in successive periods.

The life and period arguments must be expressed in the same units. For example, if life is given in months, period must also
be given in months. All arguments must be positive numbers.

The DDB function uses the following formula to calculate depreciation for a given period:

Depreciation / period = ((cost salvage) * factor) / life

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262724(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa443372(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262725(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262724(v=vs.60).aspx

3. 1.2018 DDB Function Example

Visual Basic for Applications Reference

DDB Function Example
This example uses the DDB function to return the depreciation of an asset for a specified period given the initial cost
(In itC o s t) , the salvage value at the end of the asset's useful life (Sa lvageVal), the total life of the asset in years (L ifeT im e),
and the period in years for which the depreciation is calculated (Depr).

Dim Fmt, In it C o s t , S a lvag e V a l, M onthLife , L ife T im e , DepYear, Depr
Const YRMOS = 12 ' Number o f months in a y e a r .
Fmt = "### ,##0.00"
In itC o s t = InputB ox("W hat's the i n i t i a l co st o f the a s s e t? ")
Sa lvageV al = In p u tB o x ("E n te r the a s s e t 's va lue at end o f i t s l i f e . ")
M onthLife = InputB ox("W hat's the a s s e t 's u se fu l l i f e in months?")
Do While M onthLife < YRMOS ' Ensure period i s >= 1 y e a r .

MsgBox "A sse t l i f e must be a year or more."
M onthLife = InputB ox("W hat's the a s s e t 's u se fu l l i f e in months?")

Loop
LifeT im e = M onthLife / YRMOS ' Convert months to y e a rs .
I f L ifeT im e <> In t(M o n th L ife / YRMOS) Then

LifeT im e = In t (L ife T im e + 1) ' Round up to n ea rest y e a r .
End I f
DepYear = C In t(In p u tB o x ("E n te r year fo r d e p re c ia tio n c a lc u la t io n ."))
Do While DepYear < 1 Or DepYear > L ifeT im e

MsgBox "You must en te r at le a s t 1 but not more than " & L ifeT im e
DepYear = In p u tB o x ("E n te r year fo r d e p re c ia tio n c a lc u la t io n .")

Loop
Depr = D D B (In itC o s t , S a lvag e V a l, L ife T im e , DepYear)
MsgBox "The d e p re c ia tio n fo r year " & DepYear & " i s " & _
Form at(Depr, Fmt) & " . "

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262725(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262725(v=vs.60).aspx

3. 1.2018 Dir Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Dir Function
See Also Example Specifics

Returns a String representing the name of a file, directory, or folder that matches a specified pattern or file attribute, or the
volume label of a drive.

Syntax

Dir[(pathname[, attributes])]

The Dir function syntax has these parts:

Part Description

pathname Optional. String expression that specifies a file name may include directory or folder, and drive. A zero-
length string ("") is returned if pathname is not found.

attributes Optional. Constant or numeric expression, whose sum specifies file attributes. If omitted, returns files that
match pathname but have no attributes.

Settings

The attributes argument settings are:

Constant Value Description

vbNormal 0 (Default) Specifies files with no attributes.

vbReadOnly 1 Specifies read-only files in addition to files with no attributes.

vbHidden 2 Specifies hidden files in addition to files with no attributes.

VbSystem 4 Specifies system files in addition to files with no attributes.

vbVolume 8 Specifies volume label; if any other attributed is specified, vbVolum e is ignored.

vbDirectory 16 Specifies directories or folders in addition to files with no attributes.

https://msdn.microsoft.com/en-us/Nbrary/aa262726(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa443373(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262727(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa210373.aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262726(v=vs.60).aspx

3. 1.2018 Dir Function

Note These constants are specified by Visual Basic for Applications and can be used anywhere in your code in place of the
actual values.

Remarks

Dir supports the use of multiple character (*) and single character (?) wildcards to specify multiple files.

Security Note Do not make decisions about the contents of a file based on the file name extension. For
example, a file named Form1.vb may not be a Visual Basic source file.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262726(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/Nbrary/aa262726(v=vs.60).aspx

3. 1.2018 Dir Function Example

Visual Basic for Applications Reference

Dir Function Example
This example uses the Dir function to check if certain files and directories exist.

Dim M yF ile , MyPath, MyName
' Returns "W IN .IN I" i f i t e x is t s .
M yFile = Dir("C :\W INDOW S\W IN.IN I")

' Returns filenam e w ith sp e c if ie d e x te n s io n . I f more than one * . i n i
' f i l e e x is t s , the f i r s t f i l e found i s re tu rn e d .
M yFile = D ir("C :\W IN D O W S*.IN I")

' C a l l D ir again w ithout arguments to re tu rn the next * . IN I f i l e in the
' same d ire c to ry .
M yFile = D ir

' Return f i r s t * .TX T f i l e w ith a se t hidden a t t r ib u t e .
M yFile = D ir (" * .T X T " , vbHidden)

' D isp la y the names in C :\ th a t rep resen t d i r e c t o r ie s .
MyPath = " c : \ " ' Set the path .
MyName = D ir(M yPath , v b D ire c to ry) ' R e tr ie v e the f i r s t e n t ry .
Do While MyName <> S ta r t the loop .

' Ignore the cu rre n t d ire c to ry and the encompassing d ire c to ry .
I f MyName <> " . " And MyName <> " . . " Then

' Use b itw ise comparison to make sure MyName i s a d ire c to ry .
I f (G etA ttr(M yPath & MyName) And v b D ire c to ry) = vb D ire c to ry Then

D ebug .P rin t MyName ' D isp la y e n try on ly i f i t
End I f ' i t rep resen ts a d ire c to ry .

End I f
MyName = D ir ' Get next e n t ry .

Loop

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262727(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262727(v=vs.60).aspx

3. 1.2018 DoEvents Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

DoEvents Function
See Also Example Specifics

Yields execution so that the operating system can process other events.

Syntax

DoEvents()

Remarks

The DoEvents function returns an Integer representing the number of open forms in stand-alone versions of Visual Basic,
such as Visual Basic, Professional Edition. DoEvents returns zero in all other applications.

DoEvents passes control to the operating system. Control is returned after the operating system has finished processing the
events in its queue and all keys in the SendKeys queue have been sent.

DoEvents is most useful for simple things like allowing a user to cancel a process after it has started, for example a search for
a file. For long-running processes, yielding the processor is better accomplished by using a Timer or delegating the task to
an ActiveX EXE component.. In the latter case, the task can continue completely independent of your application, and the
operating system takes case of multitasking and time slicing.

Caution Any time you temporarily yield the processor within an event procedure, make sure the procedure is not executed
again from a different part of your code before the first call returns; this could cause unpredictable results. In addition, do
not use DoEvents if other applications could possibly interact with your procedure in unforeseen ways during the time you
have yielded control.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262728(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa266279(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262729(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262728(v=vs.60).aspx

3. 1.2018 DoEvents Function Example

Visual Basic for Applications Reference

DoEvents Function Example
This example uses the DoEvents function to cause execution to yield to the operating system once every 1000 iterations of
the loop. DoEvents returns the number of open Visual Basic forms, but only when the host application is Visual Basic.

' C reate a v a r ia b le to hold number o f V is u a l B a s ic forms loaded
' and v i s ib le .
Dim I , OpenForms
For I = 1 To 150000 ' S ta r t loop .

I f I Mod 1000 = 0 Then ' I f loop has repeated 1000 t im e s .
OpenForms = DoEvents ' Y ie ld to operating system .

End I f
Next I ' Increm ent loop co un te r.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262729(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262729(v=vs.60).aspx

