
4. 1.2018 Environ Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Environ Function
See Also Example Specifics

Returns the String associated with an operating system environment variable.

Syntax

Environ({envstring | number})

The Environ function syntax has these named arguments:

Part Description

envstring Optional. String expression containing the name of an environment variable.

number Optional. Numeric expression corresponding to the numeric order of the environment string in the
environment-string table. The number argument can be any numeric expression, but is rounded to a whole
number before it is evaluated.

Remarks

If envstring can't be found in the environment-string table, a zero-length string ("") is returned. Otherwise, Environ returns
the text assigned to the specified envstring; that is, the text following the equal sign (=) in the environment-string table for
that environment variable.

If you specify number, the string occupying that numeric position in the environment-string table is returned. In this case,
Environ returns all of the text, including envstring. If there is no environment string in the specified position, Environ
returns a zero-length string.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262730(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa262731(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262730(v=vs.60).aspx

4. 1.2018 Environ Function Example

Visual Basic for Applications Reference

Environ Function Example
This example uses the Environ function to supply the entry number and length of the PATH statement from the
environment-string table.

Dim EnvString , Indx, Msg, PathLen ' Declare v a r ia b le s .
Indx = 1 ' I n i t i a l i z e index to 1 .
Do

EnvString = Environ (In d x) ' Get environment
' v a r ia b le .

I f Le ft (E n vS tr in g , 5) = "PATH=" Then ' Check PATH e n try .
PathLen = Len(Environ("PATH")) ' Get length .
Msg = "PATH entry = " & Indx & " and length = " & PathLen
E x it Do

E lse
Indx = Indx + 1 ' Not PATH en try ,

End I f ' so increment.
Loop U n til EnvString = ""
I f PathLen > 0 Then

MsgBox Msg ' D isp lay message.
E lse

MsgBox "No PATH environment va ria b le e x is t s ."
End I f

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262731(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262731(v=vs.60).aspx

4. 1.2018 EOF Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

EOF Function
See Also Example Specifics

Returns an Integer containing the Boolean value True when the end of a file opened for Random or sequential Input has
been reached.

Syntax

EOF(filenumber)

The required filenumber argument is an Integer containing any valid file number.

Remarks

Use EOF to avoid the error generated by attempting to get input past the end of a file.

The EOF function returns False until the end of the file has been reached. With files opened for Random or Binary access,
EOF returns False until the last executed Get statement is unable to read an entire record.

With files opened for Binary access, an attempt to read through the file using the Input function until EOF returns True
generates an error. Use the LOF and Loc functions instead of EOF when reading binary files with Input, or use Get when
using the EOF function. With files opened for Output, EOF always returns True.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262732(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa443374(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262733(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262732(v=vs.60).aspx

4. 1.2018 EOF Function Example

Visual Basic for Applications Reference

EOF Function Example
This example uses the EOF function to detect the end of a file. This example assumes that MYFILE is a text file with a few
lines of text.

Dim InputData
Open "MYFILE" For Input As #1 ' Open f i l e fo r in p u t.
Do While Not EOF(1) ' Check fo r end of f i l e .

Line Input #1, InputData ' Read lin e o f data .
Debug.Print InputData ' P r in t to the Immediate window.

Loop
Close #1 ' Close f i l e .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262733(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262733(v=vs.60).aspx

4. 1.2018 Error Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Error Function
See Also Example Specifics

Returns the error message that corresponds to a given error number.

Syntax

Error[(errornumber)]

The optional errornumber argument can be any valid error number. If errornumber is a valid error number, but is not defined,
Error returns the string "Application-defined or object-defined error." If errornumber is not valid, an error occurs. If
errornumber is omitted, the message corresponding to the most recent run-time error is returned. If no run-time error has
occurred, or errornumber is 0, Error returns a zero-length string ("").

Remarks

Examine the property settings of the Err object to identify the most recent run-time error. The return value of the Error
function corresponds to the Description property of the Err object.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262734(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa443375(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262735(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa172196.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262734(v=vs.60).aspx

4. 1.2018 Error Function Example

Visual Basic for Applications Reference

Error Function Example
This example uses the Error function to print error messages that correspond to the specified error numbers.

Dim ErrorNumber
For ErrorNumber = 61 To 64 ' Loop through values 61 - 64.

Debug.Print Error(ErrorNumber) ' Print error to Immediate window.
Next ErrorNumber

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262735(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262735(v=vs.60).aspx

4. 1.2018 Exp Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Exp Function
See Also Example Specifics

Returns a Double specifying e (the base of natural logarithms) raised to a power.

Syntax

Exp(number)

The required number argument is a Double or any valid numeric expression.

Remarks

If the value of number exceeds 709.782712893, an error occurs. The constant e is approximately 2.718282.

Note The Exp function complements the action of the Log function and is sometimes referred to as the antilogarithm.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262736(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa443376(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262737(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/library/aa210373.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262736(v=vs.60).aspx

4. 1.2018 Exp Function Example

Visual Basic for Applications Reference

Exp Function Example
This example uses the Exp function to return e raised to a power.

Dim MyAngle, MyHSin
' Define angle in radians.
MyAngle = 1.3
' Calculate hyperbolic sine.
MyHSin = (Exp(MyAngle) - Exp(-1 * MyAngle)) / 2

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262737(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262737(v=vs.60).aspx

4. 1.2018 FileAttr Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

FileAttr Function
See Also Example Specifics

Returns a Long representing the file mode for files opened using the Open statement.

Syntax

FNeAttrfilenumber, returntype)

The FileAttr function syntax has these named arguments:

Part Description

filenumber Required; Integer. Any valid file number.

returntype Required; Integer. Number indicating the type of information to return. Specify 1 to return a value
indicating the file mode. On 16-bit systems only, specify 2 to retrieve an operating system file handle.
Returntype 2 is not supported in 32-bit systems and causes an error.

Return Values

When the returntype argument is 1, the following return values indicate the file access mode:

Mode Value

Input 1

Output 2

Random 4

Append 8

Binary 32

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262738(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa443377(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262739(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262738(v=vs.60).aspx

4. 1.2018 FileAttr Function Example

Visual Basic for Applications Reference

FileAttr Function Example
This example uses the FileAttr function to return the file mode and file handle of an open file. The file handle is returned
only on 16-bit systems; on 32-bit systems, passing 2 as a second argument generates an error.

Dim FileNum, Mode, Handle
FileNum = 1 ' Assign file number.
Open "TESTFILE" For Append As FileNum ' Open file.
Mode = FileAttr(FileNum, 1) ' Returns 8 (Append file mode).
Handle = FileAttr(FileNum, 2) ' Returns file handle.
Close FileNum ' Close file.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262739(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262739(v=vs.60).aspx

4. 1.2018 FileDateTime Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

FileDateTime Function
See Also Example Specifics

Returns a Variant (Date) that indicates the date and time when a file was created or last modified.

Syntax

FileDateTime(pathname)

The required pathname argument is a string expression that specifies a file name. The pathname may include the directory or
folder, and the drive.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262740(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa443378(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262741(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262740(v=vs.60).aspx

4. 1.2018 FileDateTime Function Example

Visual Basic for Applications Reference

FileDateTime Function Example
This example uses the FileDateTime function to determine the date and time a file was created or last modified. The format
of the date and time displayed is based on the locale settings of your system.

Dim MyStamp
' Assume TESTFILE was last modified on February 12, 1993 at 4:35:47 PM.
' Assume English/U.S. locale settings.
MyStamp = FileDateTime("TESTFILE") ' Returns "2/12/93 4:35:47 PM".

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262741(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262741(v=vs.60).aspx

4. 1.2018 FileLen Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

FileLen Function
See Also Example Specifics

Returns a Long specifying the length of a file in bytes.

Syntax

FileLen(pathname)

The required pathname argument is a string expression that specifies a file. The pathname may include the directory or
folder, and the drive.

Remarks

If the specified file is open when the FileLen function is called, the value returned represents the size of the file immediately
before it was opened.

Note To obtain the length of an open file, use the LOF function.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262742(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa443379(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262743(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262742(v=vs.60).aspx

4. 1.2018 FileLen Function Example

Visual Basic for Applications Reference

FileLen Function Example
This example uses the FileLen function to return the length of a file in bytes. For purposes of this example, assume that
TESTFILE is a file containing some data.

Dim MySize
MySize = F ile Le n ("T ES T F ILE ") ' Returns f i l e length (b y te s) .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262743(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa262743(v=vs.60).aspx

4. 1.2018 Filter Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Filter Function
See Also Example Specifics

Description

Returns a zero-based array containing subset of a string array based on a specified filter criteria.

Syntax

Filter(sourcesrray, match[, include[, compare]])

The Filter function syntax has these named argument:

Part Description

sourcearray Required. One-dimensional array of strings to be searched.

match Required. String to search for.

include Optional. Boolean value indicating whether to return substrings that include or exclude match. If include
is True, Filter returns the subset of the array that contains match as a substring. If include is False, Filter
returns the subset of the array that does not contain match as a substring.

compare Optional. Numeric value indicating the kind of string comparison to use. See Settings section for values.

Settings

The compare argument can have the following values:

Constant Value Description

vbUseCompareOption 1 Performs a comparison using the setting of the Option Compare statement.

vbBinaryCompare 0 Performs a binary comparison.

vbTextCompare 1 Performs a textual comparison.

vbDatabaseCompare 2 Microsoft Access only. Performs a comparison based on information in your database.

https://msdn.microsoft.com/en-us/Nbrary/aa262744(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa241892(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262744(v=vs.60).aspx

4. 1.2018 Filter Function

Remarks

If no matches of match are found within sourcearray, Filter returns an empty array. An error occurs if sourcearray is Null or
is not a one-dimensional array.

The array returned by the Filter function contains only enough elements to contain the number of matched items.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262744(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/Nbrary/aa262744(v=vs.60).aspx

4. 1.2018 Format Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Format Function
See Also Example Specifics

Returns a Variant (String) containing an expression formatted according to instructions contained in a format expression.

Syntax

Format(expression[, format[, firstdayofweek[, firstweekofyear]]])

The Format function syntax has these parts:

Part Description

expression Required. Any valid expression.

format Optional. A valid named or user-defined format expression.

firstdayofweek Optional. A constant that specifies the first day of the week.

firstweekofyear Optional. A constant that specifies the first week of the year.

Settings

The firstdayofweek argument has these settings:

Constant Value Description

vbUseSystem 0 Use NLS API setting.

VbSunday 1 Sunday (default)

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

https://msdn.microsoft.com/en-us/Nbrary/aa262745(v=vs.60).aspx 1/3

https://msdn.microsoft.com/en-us/library/aa443380(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443998(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa210373.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262745(v=vs.60).aspx

4. 1.2018 Format Function

vbSaturday 7 Saturday

The firstweekofyear argument has these settings:

Constant Value Description

vbUseSystem 0 Use NLS API setting.

vbFirstJan1 1 Start with week in which January 1 occurs (default).

vbFirstFourDays 2 Start with the first week that has at least four days in the year.

vbFirstFullWeek 3 Start with the first full week of the year.

Remarks

To Format Do This

Numbers Use predefined named numeric formats or create user-defined numeric formats.

Dates and times Use predefined named date/time formats or create user-defined date/time formats.

Date and time serial numbers Use date and time formats or numeric formats.

Strings Create your own user-defined string formats.

If you try to format a number without specifying format, Format provides functionality similar to the Str function, although it
is internationally aware. However, positive numbers formatted as strings using Format dont include a leading space reserved
for the sign of the value; those converted using Str retain the leading space.

If you are formatting a non-localized numeric string, you should use a user-defined numeric format to ensure that you get
the look you want.

Note If the Calendar property setting is Gregorian and format specifies date formatting, the supplied expression must be
Gregorian. If the Visual Basic Calendar property setting is Hijri, the supplied expression must be Hijri.

If the calendar is Gregorian, the meaning of format expression symbols is unchanged. If the calendar is Hijri, all date format
symbols (for example, dddd, mmmm,yyyy) have the same meaning but apply to the Hijri calendar. Format symbols remain in
English; symbols that result in text display (for example, AM and PM) display the string (English or Arabic) associated with
that symbol. The range of certain symbols changes when the calendar is Hijri.

Symbol Range

d 1-30

dd 1-30

https://msdn.microsoft.com/en-us/Nbrary/aa262745(v=vs.60).aspx 2/3

https://msdn.microsoft.com/en-us/Nbrary/aa262745(v=vs.60).aspx

4. 1.2018 Format Function

ww 1-51

mmm Displays full month names (Hijri month names have no abbreviations).

y 1-355

yyyy 100-9666

© 2018 Microsoft

https://msdn.microsoftcom/en-us/library/aa262745(v=vs.60).aspx 3/3

https://msdn.microsoftcom/en-us/library/aa262745(v=vs.60).aspx

4. 1.2018 Format Function Example

Visual Basic for Applications Reference

Format Function Example
This example shows various uses of the Format function to format values using both named formats and user-defined
formats. For the date separator (/), time separator (:), and AM/ PM literal, the actual formatted output displayed by your
system depends on the locale settings on which the code is running. When times and dates are displayed in the
development environment, the short time format and short date format of the code locale are used. When displayed by
running code, the short time format and short date format of the system locale are used, which may differ from the code
locale. For this example, English/U.S. is assumed.

MyTime and MyDate are displayed in the development environment using current system short time setting and short date
setting.

Dim MyTime, MyDate, MyStr
MyTime = #17:04:23#
MyDate = #January 27, 1993#

' Returns current system time in the system-defined long time format.
MyStr = Format(Time, "Long Time")

' Returns current system date in the system-defined long date format.
MyStr = Format(Date, "Long Date")

MyStr = Format(MyTime, "h:m:s") ' Returns "17:4:23".
MyStr = Format(MyTime, "hh:mm:ss AMPM") ' Returns "05:04:23 PM".
MyStr = Format(MyDate, "dddd, mmm d yyyy") ' Returns "Wednesday,

' Jan 27 1993".
' If format is not supplied, a string is returned.
MyStr = Format(23) ' Returns "23".

' User-defined formats.
MyStr = Format(5459.4, "##,##0.00") ' Returns "5,459.40".
MyStr = Format(334.9, "###0.00") ' Returns "334.90".
MyStr = Format(5, "0.00%") ' Returns "500.00%".
MyStr = Format("HELLO", "<") ' Returns "hello".
MyStr = Format("This is it", ">") ' Returns "THIS IS IT".

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa443998(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa443998(v=vs.60).aspx

4. 1.2018 FormatCurrency Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

FormatCurrency Function
See Also Example Specifics

Description

Returns an expression formatted as a currency value using the currency symbol defined in the system control panel.

Syntax

FormatCurrency(Expression[,NumDigitsAfterDedmal [,IncludeLeadingDigit [,UseParensForNegativeNumbers [,GroupDigits]]]])

The FormatCurrency function syntax has these parts:

Part Description

Expression Required. Expression to be formatted.

NumDigitsAfterDecimal Optional. Numeric value indicating how many places to the right of the decimal are
displayed. Default value is 1, which indicates that the computer's regional settings are
used.

IncludeLeadingDigit Optional. Tristate constant that indicates whether or not a leading zero is displayed for
fractional values. See Settings section for values.

UseParensForNegativeNumbers Optional. Tristate constant that indicates whether or not to place negative values within
parentheses. See Settings section for values.

GroupDigits Optional. Tristate constant that indicates whether or not numbers are grouped using
the group delimiter specified in the computer's regional settings. See Settings section
for values.

Settings

The IncludeLeadingDigit, UseParensForNegativeNumbers, and GroupDigits arguments have the following settings:

Constant Value Description

vbTrue 1 True

vbFalse 0 False

https://msdn.microsoft.com/en-us/Nbrary/aa262746(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa443381(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262746(v=vs.60).aspx

4. 1.2018 FormatCurrency Function

vbUseDefault 2 Use the setting from the computer's regional settings.

Remarks

When one or more optional arguments are omitted, the values for omitted arguments are provided by the computer's
regional settings.

The position of the currency symbol relative to the currency value is determined by the system's regional settings.

Note All settings information comes from the Regional Settings Currency tab, except leading zero which comes from the
Number tab.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262746(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/Nbrary/aa262746(v=vs.60).aspx

4. 1.2018 FormatDateTime Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

FormatDateTime Function
See Also Example Specifics

Description

Returns an expression formatted as a date or time.

Syntax

FormatDateTime(Date[, NamedFormat])

The FormatDateTime function syntax has these parts:

Part Description

Date Required. Date expression to be formatted.

NamedFormat Optional. Numeric value that indicates the date/time format used. If omitted, vbGeneralDate is used.

Settings

The NamedFormat argument has the following settings:

Constant Value Description

vbGeneralDate 0 Display a date and/or time. If there is a date part, display it as a short date. If there is a time
part, display it as a long time. If present, both parts are displayed.

vbLongDate 1 Display a date using the long date format specified in your computer's regional settings.

vbShortDate 2 Display a date using the short date format specified in your computer's regional settings.

vbLongTime 3 Display a time using the time format specified in your computer's regional settings.

vbShortTime 4 Display a time using the 24-hour format (hh:mm).

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa443991(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa443382(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa443991(v=vs.60).aspx

4. 1.2018 FormatNumber Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

FormatNumber Function
See Also Example Specifics

Description

Returns an expression formatted as a number.

Syntax

FormatNumber(Expression[,NumDigitsAfterDecimal [,IncludeLeadingDigit [,UseParensForNegativeNumbers [,GroupDigits]]]])

The FormatNumber function syntax has these parts:

Part Description

Expression Required. Expression to be formatted.

NumDigitsAfterDecimal Optional. Numeric value indicating how many places to the right of the decimal are
displayed. Default value is 1, which indicates that the computer's regional settings are
used.

IncludeLeadingDigit Optional. Tristate constant that indicates whether or not a leading zero is displayed for
fractional values. See Settings section for values.

UseParensForNegativeNumbers Optional. Tristate constant that indicates whether or not to place negative values within
parentheses. See Settings section for values.

GroupDigits Optional. Tristate constant that indicates whether or not numbers are grouped using
the group delimiter specified in the computer's regional settings. See Settings section
for values.

Settings

The IncludeLeadingDigit, UseParensForNegativeNumbers, and GroupDigits arguments have the following settings:

Constant Value Description

vbTrue 1 True

vbFalse 0 False

https://msdn.microsoft.com/en-us/Nbrary/aa443995(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa443383(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa443995(v=vs.60).aspx

4. 1.2018 FormatNumber Function

vbUseDefault 2 Use the setting from the computer's regional settings.

Remarks

When one or more optional arguments are omitted, the values for omitted arguments are provided by the computer's
regional settings.

Note All settings information comes from the Regional Settings Number tab.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa443995(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/Nbrary/aa443995(v=vs.60).aspx

4. 1.2018 FormatPercent Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

FormatPercent Function
See Also Example Specifics

Description

Returns an expression formatted as a percentage (multipled by 100) with a trailing % character.

Syntax

FormatPercent(Expression[,NumDigitsAfterDedmal [,IncludeLeadingDigit [,UseParensForNegativeNumbers [,GroupDigits]]]])

The FormatPercent function syntax has these parts:

Part Description

Expression Required. Expression to be formatted.

NumDigitsAfterDecimal Optional. Numeric value indicating how many places to the right of the decimal are
displayed. Default value is 1, which indicates that the computer's regional settings are
used.

IncludeLeadingDigit Optional. Tristate constant that indicates whether or not a leading zero is displayed for
fractional values. See Settings section for values.

UseParensForNegativeNumbers Optional. Tristate constant that indicates whether or not to place negative values within
parentheses. See Settings section for values.

GroupDigits Optional. Tristate constant that indicates whether or not numbers are grouped using
the group delimiter specified in the computer's regional settings. See Settings section
for values.

Settings

The IncludeLeadingDigit, UseParensForNegativeNumbers, and GroupDigits arguments have the following settings:

Constant Value Description

vbTrue 1 True

vbFalse 0 False

https://msdn.microsoft.com/en-us/Nbrary/aa443996(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa443384(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa443996(v=vs.60).aspx

4. 1.2018 FormatPercent Function

vbUseDefault 2 Use the setting from the computer's regional settings.

Remarks

When one or more optional arguments are omitted, the values for omitted arguments are provided by the computer's
regional settings.

Note All settings information comes from the Regional Settings Number tab.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa443996(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/Nbrary/aa443996(v=vs.60).aspx

4. 1.2018 FreeFile Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

FreeFile Function
See Also Example Specifics

Returns an Integer representing the next file number available for use by the Open statement.

Syntax

FreeFile[(rangenumber)]

The optional rangenumber argument is a Variant that specifies the range from which the next free file number is to be
returned. Specify a 0 (default) to return a file number in the range 1 255, inclusive. Specify a 1 to return a file number in the
range 256 511.

Remarks

Use FreeFile to supply a file number that is not already in use.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa445002(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa266177(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa445005(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa445002(v=vs.60).aspx

4. 1.2018 FreeFile Function Example

Visual Basic for Applications Reference

FreeFile Function Example
This example uses the FreeFile function to return the next available file number. Five files are opened for output within the
loop, and some sample data is written to each.

Dim MyIndex, FileNumber
For MyIndex = 1 To 5 ' Loop 5 times.

FileNumber = FreeFile ' Get unused file
' number.

Open "TEST" & MyIndex For Output As #FileNumber ' Create file name.
Write #FileNumber, "This is a sample." ' Output text.
Close #FileNumber ' Close file.

Next MyIndex

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa445005(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa445005(v=vs.60).aspx

4. 1.2018 FV Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

FV Function
See Also Example Specifics

Returns a Double specifying the future value of an annuity based on periodic, fixed payments and a fixed interest rate.

Syntax

FV(rate, nper, pmt[, pv[, type]])

The FV function has these named arguments:

Part Description

rate Required. Double specifying interest rate per period. For example, if you get a car loan at an annual percentage
rate (APR) of 10 percent and make monthly payments, the rate per period is 0.1/12, or 0.0083.

nper Required. Integer specifying total number of payment periods in the annuity. For example, if you make monthly
payments on a four-year car loan, your loan has a total of 4 * 12 (or 48) payment periods.

pmt Required. Double specifying payment to be made each period. Payments usually contain principal and interest
that doesn't change over the life of the annuity.

pv Optional. Variant specifying present value (or lump sum) of a series of future payments. For example, when you
borrow money to buy a car, the loan amount is the present value to the lender of the monthly car payments you
will make. If omitted, 0 is assumed.

type Optional. Variant specifying when payments are due. Use 0 if payments are due at the end of the payment
period, or use 1 if payments are due at the beginning of the period. If omitted, 0 is assumed.

Remarks

An annuity is a series of fixed cash payments made over a period of time. An annuity can be a loan (such as a home
mortgage) or an investment (such as a monthly savings plan).

The rate and nper arguments must be calculated using payment periods expressed in the same units. For example, if rate is
calculated using months, nper must also be calculated using months.

For all arguments, cash paid out (such as deposits to savings) is represented by negative numbers; cash received (such as
dividend checks) is represented by positive numbers.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa445006(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa443385(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa445008(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa445006(v=vs.60).aspx

4. 1.2018 FV Function Example

Visual Basic for Applications Reference

FV Function Example
This example uses the FV function to return the future value of an investment given the percentage rate that accrues per
period (APR / 12), the total number of payments (TotPmts), the payment (Payment), the current value of the investment
(PVal), and a number that indicates whether the payment is made at the beginning or end of the payment period (PayType).
Note that because Payment represents cash paid out, it's a negative number.

Dim Fmt, Payment, APR, TotPmts, PayType, PVal, FVal
Const ENDPERIOD = 0, BEGINPERIOD = 1 ' When payments are made.
Fmt = "###,###,##0.00" ' Define money form at.
Payment = InputBox("How much do you plan to save each month?")
APR = InputBox("Enter the expected in te re s t annual percentage r a te .")
I f APR > 1 Then APR = APR / 100 ' Ensure proper form.
TotPmts = InputBox("For how many months do you expect to save?")
PayType = MsgBox("Do you make payments at the end of month?", vbYesNo)
I f PayType = vbNo Then PayType = BEGINPERIOD E lse PayType = ENDPERIOD
PVal = InputBox("How much i s in th is savings account now?")
FVal = FV(APR / 12, TotPmts, -Payment, -PVal, PayType)
MsgBox "Your savings w i l l be worth " & Form at(FVal, Fmt) & " . "

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa445008(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa445008(v=vs.60).aspx

4. 1.2018 GetAllSettings Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

GetAllSettings Function
See Also Example Specifics

Returns a list of key settings and their respective values (originally created with SaveSetting) from an application's entry in
the Windows registry.

Syntax

GetAllSettings(appname, section)

The GetAllSettings function syntax has these named arguments:

Part Description

appname Required. String expression containing the name of the application or project whose key settings are
requested.

section Required. String expression containing the name of the section whose key settings are requested.
GetAllSettings returns a Variant whose contents is a two-dimensional array of strings containing all the key
settings in the specified section and their corresponding values.

Remarks

GetAllSettings returns an uninitialized Variant if either appname or section does not exist.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa445009(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa443387(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa445012(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa172189.aspx
https://msdn.microsoft.com/en-us/library/aa219965.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa445009(v=vs.60).aspx

4. 1.2018 GetAllSettings Function Example

Visual Basic for Applications Reference

GetAllSettings Function Example
This example first uses the SaveSetting statement to make entries in the Windows registry for the application specified as
appname, then uses the GetAllSettings function to display the settings. Note that application names and section names
can't be retrieved with GetAllSettings. Finally, the DeleteSetting statement removes the application's entries.

' V arian t to hold 2-dimensional a rray returned by G e tA llSe ttin g s
' In teger to hold counter.
Dim MySettings As V a ria n t, in tS e tt in g s As Integer
' Place some se tt in g s in the re g is t ry .
SaveSetting appname := "MyApp", section := "S ta rtu p " , _
key := "Top", se tt in g := 75
SaveSetting "M yApp","Startup", " L e f t " , 50
' R etrieve the se tt in g s .
MySettings = GetAllSettings(appnam e := "MyApp", section := "S ta rtu p ")

For in tS e tt in g s = LBound(MySettings, 1) To UBound(MySettings, 1)
Debug.Print M ySe ttin g s(in tSe ttin g s , 0) , M ySe ttin g s(in tSe ttin g s , 1)

Next in tS e tt in g s
D eleteSetting "MyApp", "Startup"

© 2018 Microsoft

https://msdn.microsoftcom/en-us/library/aa445012(v=vs.60).aspx 1/1

https://msdn.microsoftcom/en-us/library/aa445012(v=vs.60).aspx

4. 1.2018 GetAttr Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

GetAttr Function
See Also Example Specifics

Returns an Integer representing the attributes of a file, directory, or folder.

Syntax

GetAttr(pathname)

The required pathname argument is a string expression that specifies a file name. The pathname may include the directory or
folder, and the drive.

Return Values

The value returned by GetAttr is the sum of the following attribute values:

Constant Value Description

vbNormal 0 Normal.

vbReadOnly 1 Read-only.

vbHidden 2 Hidden.

vbSystem 4 System file.

vbDirectory 16 Directory or folder.

vbArchive 32 File has changed since last backup.

Note These constants are specified by Visual Basic for Applications. The names can be used anywhere in your code in place
of the actual values.

Remarks

To determine which attributes are set, use the And operator to perform a bitwise comparison of the value returned by the
GetAttr function and the value of the individual file attribute you want. If the result is not zero, that attribute is set for the
named file. For example, the return value of the following And expression is zero if the Archive attribute is not set:

Resu lt = GetAttr(FName) And vbArchive

A nonzero value is returned if the Archive attribute is set.

https://msdn.microsoft.com/en-us/library/aa445014(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa443388(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa445015(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa210373.aspx
https://msdn.microsoft.com/en-us/library/aa445014(v=vs.60).aspx

4. 1.2018 GetAttr Function Example

Visual Basic for Applications Reference

GetAttr Function Example
This example uses the GetAttr function to determine the attributes of a file and directory or folder.

Dim MyAttr
' Assume f i l e TESTFILE has hidden a ttr ib u te s e t .
MyAttr = G e tA ttr("T ESTF ILE ") ' Returns 2.

' Returns nonzero i f hidden a ttr ib u te i s set on TESTFILE .
Debug.Print MyAttr And vbHidden

' Assume f i l e TESTFILE has hidden and read-only a ttr ib u te s s e t .
MyAttr = G e tA ttr("T ESTF ILE ") ' Returns 3.

' Returns nonzero i f hidden a ttr ib u te i s set on TESTFILE .
Debug.Print MyAttr And (vbHidden + vbReadOnly)

' Assume MYDIR i s a d ire c to ry or fo ld e r .
MyAttr = GetAttr("M YDIR") ' Returns 16.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa445015(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa445015(v=vs.60).aspx

4. 1.2018 GetAutoServerSettings Function

This documentation is archived and is not being maintained.

Visual Basic Reference
Visual Studio 6.0

GetAutoServerSettings Function
See Also Example

Returns information about the state of an ActiveX component's registration.

Syntax

object.GetAutoServerSettings([progid], [clsid])

The GetAutoServerSettings function syntax has these parts:

Part Description

object Required. An object expression that evaluates to an object in the Applies To list.

progid Optional. A variant expression specifying the ProgID for the component.

clsid Optional. A variant expression specifying the CLSID for the component.

Return Values

The GetAutoServerSettings function returns a Variant that contains an array of values about the given ActiveX component.
The index values and descriptions are:

Value Description

1 True if the ActiveX component is registered remotely.

2 Remote machine name.

3 RPC network protocol name.

4 RPC authentication level.

Remarks

If a value is missing or not available, the value will be an empty string. If there is an error during the method, then the return
value will be a Variant of type Empty.

https://msdn.microsoft.com/en-us/Nbrary/aa445572(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa445573(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa445572(v=vs.60).aspx

4. 1.2018 GetAutoServerSettings Function Example

Visual Basic Reference

GetAutoServerSettings Function Example
This example retrieves information about a remotely registered object named "Hello":

Sub V iew H ello ()
Dim oRegClass As New RegClass
Dim vRC As Varian t
vRC = oRegClass.GetAutoServerSettings _

(''H e llo P ro j.H e llo C la ss '')
I f Not(IsEm pty(vRC)) Then

I f vRC(1) Then
MsgBox "H ello i s reg iste red remotely on a " _
& "se rve r named: " & vRC(1)

E lse
MsgBox "H ello i s reg iste red lo c a l ly ."

End I f
End i f

End Sub

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa445573(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa445573(v=vs.60).aspx

4. 1.2018 GetObject Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

GetObject Function
See Also Example Specifics

Returns a reference to an object provided by an ActiveX component.

Syntax

GetObject([pathname] [, dass])

The GetObject function syntax has these named arguments:

Part Description

pathname Optional; Variant (String). The full path and name of the file containing the object to retrieve. If pathname
is omitted, class is required.

class Optional; Variant (String). A string representing the class of the object.

The class argument uses the syntax appname.objecttype and has these parts:

Part Description

appname Required; Variant (String). The name of the application providing the object.

objecttype Required; Variant (String). The type or class of object to create.

Remarks

Use the GetObject function to access an ActiveX object from a file and assign the object to an object variable. Use the Set
statement to assign the object returned by GetObject to the object variable. For example:

Dim CADObject As Object
Set CADObject = GetObject("C:\CAD\SCHEMA.CAD")

When this code is executed, the application associated with the specified pathname is started and the object in the specified
file is activated.

If pathname is a zero-length string (""), GetObject returns a new object instance of the specified type. If the pathname
argument is omitted, GetObject returns a currently active object of the specified type. If no object of the specified type

https://msdn.microsoft.com/en-us/Nbrary/aa445016(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa443390(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa445017(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa220050.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa445016(v=vs.60).aspx

4. 1.2018 GetObject Function

exists, an error occurs.

Some applications allow you to activate part of a file. Add an exclamation point (!) to the end of the file name and follow it
with a string that identifies the part of the file you want to activate. For information on how to create this string, see the
documentation for the application that created the object.

For example, in a drawing application you might have multiple layers to a drawing stored in a file. You could use the
following code to activate a layer within a drawing called SCHEMA.CAD:

Set LayerObject = GetObject("C:\CAD\SCHEMA.CAD!Layer3")

If you don't specify the object's class, Automation determines the application to start and the object to activate, based on
the file name you provide. Some files, however, may support more than one class of object. For example, a drawing might
support three different types of objects: an Application object, a Drawing object, and a Toolbar object, all of which are part
of the same file. To specify which object in a file you want to activate, use the optional class argument. For example:

Dim MyObject As Object
Set MyObject = GetObject("C:\DRAWINGS\SAMPLE.DRW", "FIGMENT.DRAWING")

In the example, FIGMENT is the name of a drawing application and DRAWING is one of the object types it supports.

Once an object is activated, you reference it in code using the object variable you defined. In the preceding example, you
access properties and methods of the new object using the object variable MyObject. For example:

MyObject.Line 9, 90
M yO bject.InsertText 9, 100, "H e llo , w o rld ."
MyObject.SaveAs "C:\DRAWINGS\SAMPLE.DRW"

Note Use the GetObject function when there is a current instance of the object or if you want to create the object with a
file already loaded. If there is no current instance, and you don't want the object started with a file loaded, use the
CreateObject function.

If an object has registered itself as a single-instance object, only one instance of the object is created, no matter how many
times CreateObject is executed. With a single-instance object, GetObject always returns the same instance when called with
the zero-length string ("") syntax, and it causes an error if the pathname argument is omitted. You can't use GetObject to
obtain a reference to a class created with Visual Basic.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa445016(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa172196.aspx
https://msdn.microsoft.com/en-us/library/aa171675.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa445016(v=vs.60).aspx

4. 1.2018 GetObject Function Example

Visual Basic for Applications Reference

GetObject Function Example
This example uses the GetObject function to get a reference to a specific Microsoft Excel worksheet (MyXL). It uses the
worksheet's Application property to make Microsoft Excel visible, to close it, and so on. Using two API calls, the DetectExcel
Sub procedure looks for Microsoft Excel, and if it is running, enters it in the Running Object Table. The first call to GetObject
causes an error if Microsoft Excel isn't already running. In the example, the error causes the ExcelWasNotRunning flag to be
set to True. The second call to GetObject specifies a file to open. If Microsoft Excel isn't already running, the second call
starts it and returns a reference to the worksheet represented by the specified file, mytest.xls. The file must exist in the
specified location; otherwise, the Visual Basic error Automation error is generated. Next the example code makes both
Microsoft Excel and the window containing the specified worksheet visible. Finally, if there was no previous version of
Microsoft Excel running, the code uses the Application object's Quit method to close Microsoft Excel. If the application was
already running, no attempt is made to close it. The reference itself is released by setting it to Nothing.

' Declare necessary API ro u tin es :
Declare Function FindWindow Lib "user32" A lia s _
"FindWindowA" (ByVal lpClassName as S tr in g , _

ByVal lpWindowName As Long) As Long

Declare Function SendMessage Lib "user32" A lia s _
"SendMessageA" (ByVal hWnd as Long,ByVal wMsg as Long, _

ByVal wParam as Long, _
ByVal lParam As Long) As Long

Sub G e tExce l()
Dim MyXL As Object ' V ariab le to hold reference

' to M icrosoft E xc e l.
Dim ExcelWasNotRunning As Boolean ' Flag fo r f in a l re le a se .

' Test to see i f there i s a copy o f M icrosoft Excel a lready running.
On E rro r Resume Next ' Defer e rro r trapp ing .

' Getobject function ca lle d without the f i r s t argument returns a
' reference to an instance o f the a p p lica tio n . I f the ap p lica tio n i s n ' t
' running, an e rro r occurs.

Set MyXL = G e to b ject(, "E x c e l.A p p lic a t io n ")
I f Err.Number <> 0 Then ExcelWasNotRunning = True
E r r .C le a r ' C lear E rr ob ject in case e rro r occurred .

' Check fo r M icrosoft E x c e l. I f M icrosoft Exce l i s running,
' enter i t in to the Running Object ta b le .

D etectExcel

' Set the ob ject va ria b le to reference the f i l e you want to see.
Set MyXL = G e to b ject("c:\vb4\M YTEST.XLS")

' Show M icrosoft Excel through i t s A pp lication p roperty . Then
' show the actua l window containing the f i l e using the Windows
' co lle c t io n o f the MyXL object re ference .

M yX L .A p p lica tio n .V is ib le = True
M yXL.Parent.W indow s(1).V isib le = True

Do m anipulations of your f i l e here.

' I f th is copy of M icrosoft Excel was not running when you
' s ta rte d , close i t using the A pp lication p rop erty 's Quit method.
' Note th at when you t r y to q u it M icrosoft E xce l, the

https://msdn.microsoft.com/en-us/Nbrary/aa445017(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/Nbrary/aa445017(v=vs.60).aspx

4. 1.2018 GetObject Function Example

' t i t l e bar b lin k s and a message i s d isplayed asking i f you
' want to save any loaded f i l e s .

I f ExcelWasNotRunning = True Then
M yXL.Application .Q uit

End IF

Set MyXL = Nothing ' Release reference to the
' ap p lica tio n and spreadsheet.

End Sub

Sub D e tectExce l()
' Procedure dectects a running Excel and re g is te rs i t .

Const WMJJSER = 1024
Dim hWnd As Long

' I f Exce l i s running th is API c a l l returns i t s handle.
hWnd = FindWindow("XLMAIN", 0)
I f hWnd = 0 Then ' 0 means Exce l not running.

E x it Sub
E lse
' Excel i s running so use the SendMessage API
' function to enter i t in the Running Object Tab le .

SendMessage hWnd, WM_JSER + 18, 0, 0
End I f

End Sub

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa445017(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/Nbrary/aa445017(v=vs.60).aspx

4. 1.2018 GetSetting Function

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

GetSetting Function
See Also Example Specifics

Returns a key setting value from an application's entry in the Windows registry.

Syntax

GetSetting(appname, section, key[, default])

The GetSetting function syntax has these named arguments:

Part Description

appname Required. String expression containing the name of the application or project whose key setting is
requested.

section Required. String expression containing the name of the section where the key setting is found.

key Required. String expression containing the name of the key setting to return.

default Optional. Expression containing the value to return if no value is set in the key setting. If omitted, default is
assumed to be a zero-length string ("").

Remarks

If any of the items named in the GetSetting arguments do not exist, GetSetting returns the value of default.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa445018(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa443391(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa445019(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa445018(v=vs.60).aspx

4. 1.2018 GetSetting Function Example

Visual Basic for Applications Reference

GetSetting Function Example
This example first uses the SaveSetting statement to make entries in the Windows registry (or .ini file on 16-bit Windows
platforms) for the application specified as appname, and then uses the GetSetting function to display one of the settings.
Because the default argument is specified, some value is guaranteed to be returned. Note that section names can't be
retrieved with GetSetting. Finally, the DeleteSetting statement removes all the application's entries.

' V arian t to hold 2-dimensional a rray returned by G etSetting .
Dim MySettings As Varian t
' Place some se tt in g s in the re g is t ry .
SaveSetting "M yApp","Startup", "Top", 75
SaveSetting "M yApp","Startup", " L e f t " , 50

Debug.Print GetSetting(appname := "MyApp", section := "S ta rtu p " ,
key := " L e f t " , d e fau lt := "25")

D e leteSetting "MyApp", "Startup"

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa445019(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa445019(v=vs.60).aspx

