27. 12. 2017 rdoColumn Object (RemoteData Control)

This documentation is archived and is not being maintained.

Visual Basic: RDO Data Control

Visual Studio 6.0

rdoColumn Object

See Also Example Properties Methods Events

An rdoColumn object represents a column of data with a common data type and a common set of properties.

Remarks

The rdoTable, or rdoResultset object's rdoColumns collection represents the rdoColumn object in a row of data. You can
use the rdoColumn object in an rdoResultset to read and set values for the data columns in the current row of the object.
However, in most cases, references to the rdoColumn object is only implied because the rdoColumns collection is the
rdoResultset object's default collection.

An rdoColumn object's name is determined by the name used to define the column in the data source table or by the name
assigned to it in an SQL query. For example, if an SQL query aliases the column, this name is assigned to the Name property;
otherwise, the column's name is used.

You manipulate database columns using an rdoColumn object and its methods and properties. For example, you can:

e Use the Value property of an rdoColumn to extract data from a specified column.

e Use the Type and Size property settings to determine the data type and size of the data.

e Use the Updatable property to see if the column can be changed.

e Use the SourceColumn and SourceTable property settings to locate the original source of the data.

e Use the OrdinalPosition property to get presentation order of the rdoColumn objects in an rdoColumns collection.

e Use the Attributes and Required property settings to determine optional characteristics and if Nulls are permitted in
the column.

e Use the AllowZeroLength property to determine how zero-length strings are handled.

e Use the BatchConflictValue, and OriginalValue properties to resolve optimistic batch update conflicts.
e Use the KeyColumn to determine if this column is part of the primary key.

e Use the Status property to determine if the column has been modified.

e Use the AppendChunk, ColumnSize, and GetChunk methods to manipulate columns that require the use of these
methods, as determined by the ChunkRequired property.

https://msdn.microsoft.com/en-us/Nbrary/aa262564(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa240067(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262650(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228744(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228743(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240068(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443289(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443326(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241004(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443298(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241026(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240771(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443514(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241041(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262564(v=vs.60).aspx

27. 12. 2017 rdoColumn Object (RemoteData Control)

When you need to reference data from an rdoResultset column, you can refer to the Value property of an rdoColumn
object by:

e Referencing the Name property setting using this syntax:

Refers to the Au_Fname column rdoColumns("Au_Fname")
rs.rdoColumns("Au_Fname")

-Or-

Refers to the Au_Fname column
rs.rdoColumns!Au_Lname

e Referencing its ordinal position in the rdoColumns collection using this syntax:

rs.rdoColumns(0)

The rdoTable object's rdoColumns collection contains specifications for the data columns. You can use the rdoColumn
object of an rdoTable object to map a base table's column structure. However, you cannot directly alter the structure of a
database table using RDO properties and methods. You can, however, use data definition language (DDL) action queries to
modify database schema.

When the rdoColumn object is accessed as part of an rdoResultset object, data from the current row is visible in the
rdoColumn object's Value property. To manipulate data in the rdoResultset, you don't usually reference the rdoColumns
collection directly. Instead, use syntax that references the rdoColumns collection as the default collection of the
rdoResultset.

dim rs As rdoResultset
Set rs = cn.OpenResultset("Select * from Authors"

& "Where Au_Lname = 'White" rdOpenForwardOnly)
debug.print rs!Au_Fname

'Refers to rdoRecordset object's rdoColumns collection.

© 2017 Microsoft

https://msdn.microsoftcom/en-us/Nbrary/aa262564(v=vs.60).aspx

212

https://msdn.microsoft.com/en-us/library/aa443282(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443303(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241001(v=vs.60).aspx
https://msdn.microsoftcom/en-us/Nbrary/aa262564(v=vs.60).aspx

27. 12. 2017 rdoColumn Object, rdoColumns Collection Example (RemoteData Control)

Visual Basic: RDO Data Control

rdoColumn Object, rdoColumns Collection

Example

The following example opens a connection against an SQL Server database and creates an rdoResultset that returns two

columns: one normal column, and one derived from an expression. Next, the example maps the rdoColumn objects returned

from the result set.

Private Sub rdoColumnButton_Click()
Dim cl As rdoColumn

Dim rs As rdoResultset

Dim sSQL As String

Dim cn As rdoConnection

Dim connect As String

connect = "uid=;pwd=;database=pubs;"

Set cn = rdoEnvironments(0).OpenConnection(workdb,
rdDriverNoPrompt, False, connect)

sSQL = "Select Pub_ID, Max(Price) BestPrice " _
& " from Titles Group by Pub_ID"

Set rs = cn.OpenResultset(sSQL, rdOpenForwardOnly,
rdConcurReadOnly)

With rs
For Each cl In .rdoColumns
Print cl.Name; "-"; cl.Type; ":"; cl.Size,
cl.SourceTable, cl.SourceColumn
Next cl
Print

Do Until .EOF
For Each cl In .rdoColumns
Print cl.Value,
Next cl
Print
.MoveNext
Loop
End With
End Sub

© 2017 Microsoft

https://msdn.microsoftcom/en-us/library/aa262650(v=vs.60).aspx

171

https://msdn.microsoftcom/en-us/library/aa262650(v=vs.60).aspx

27. 12. 2017 rdoColumns Collection (RemoteData Control)

This documentation is archived and is not being maintained.

Visual Basic: RDO Data Control

Visual Studio 6.0

rdoColumns Collection

See Also Example Properties Methods Events

An rdoColumns collection contains all rdoColumn objects of an rdoResultset, or rdoTable object.

Remarks

The rdoTable, or rdoResultset object's rdoColumns collection represents the rdoColumn objects in a row of data. You use
the rdoColumn object in an rdoResultset to read and set values for the data columns in the current row of the object.

The rdoColumn object is either created automatically by RDO when

e An rdoTable, or rdoResultset object is created.
e An rdoTable object is referenced.

e An rdoResultset is created via OpenResultset.

© 2017 Microsoft

https://msdn.microsoftcom/en-us/Nbrary/aa262747(v=vs.60).aspx

171

https://msdn.microsoft.com/en-us/library/aa240066(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262650(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228745(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa229899(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241004(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443298(v=vs.60).aspx
https://msdn.microsoftcom/en-us/Nbrary/aa262747(v=vs.60).aspx

27. 12. 2017 rdoColumn Object, rdoColumns Collection Example (RemoteData Control)

Visual Basic: RDO Data Control

rdoColumn Object, rdoColumns Collection

Example

The following example opens a connection against an SQL Server database and creates an rdoResultset that returns two

columns: one normal column, and one derived from an expression. Next, the example maps the rdoColumn objects returned

from the result set.

Private Sub rdoColumnButton_Click()
Dim cl As rdoColumn

Dim rs As rdoResultset

Dim sSQL As String

Dim cn As rdoConnection

Dim connect As String

connect = "uid=;pwd=;database=pubs;"

Set cn = rdoEnvironments(0).OpenConnection(workdb,
rdDriverNoPrompt, False, connect)

sSQL = "Select Pub_ID, Max(Price) BestPrice " _
& " from Titles Group by Pub_ID"

Set rs = cn.OpenResultset(sSQL, rdOpenForwardOnly,
rdConcurReadOnly)

With rs
For Each cl In .rdoColumns
Print cl.Name; "-"; cl.Type; ":"; cl.Size,
cl.SourceTable, cl.SourceColumn
Next cl
Print

Do Until .EOF
For Each cl In .rdoColumns
Print cl.Value,
Next cl
Print
.MoveNext
Loop
End With
End Sub

© 2017 Microsoft

https://msdn.microsoftcom/en-us/library/aa262650(v=vs.60).aspx

171

https://msdn.microsoftcom/en-us/library/aa262650(v=vs.60).aspx

27. 12. 2017 rdoConnection Object (RemoteData Control)

This documentation is archived and is not being maintained.

Visual Basic: RDO Data Control

Visual Studio 6.0

rdoConnection Object

See Also Example Properties Methods Events

An rdoConnection object represents an open connection to a remote data source and a specific database on that data
source, or an allocated but as yet unconnected object, which can be used to subsequently establish a connection.

Remarks

Generally, an rdoConnection object represents a physical connection to the remote data source and corresponds to a single
ODBC hDbc handle. A connection to a remote data source is required before you can access its data. You can open
connections to remote ODBC data sources and create rdoConnection objects with either the RemoteData control or the
OpenConnection method of an rdoEnvironment object.

To establish a connection to a remote server using the rdoConnection object, you can use the OpenConnection method to
gather the connect, dsname, readonly and prom pt arguments and open the connection. These arguments are then applied
to the newly created rdoConnection object. You can also establish connections using the RemoteData control.

Creating Stand Alone rdoConnection Objects

You can also create a new rdoConnection object that is not immediately linked with a specific physical connection to a data
source. For example, the following code creates a new stand-alone rdoConnection object:

Dim X as new rdoConnection.

Once created, you can set the properties of a stand-alone rdoConnection object and subsequently use the
EstablishConnection method. This method determines how users are prompted based on the prom pt argument, and sets
the read-only status of the connection based on the readonly argument.

When using this technique, RDO sets the following properties based on rdoEngine default values: CursorDriver,
LoginTimeout, UserName, Password and ErrorThreshold. The CursorDriver and LoginTimeout properties can be set in
the rdoConnection object itself and the UserName and Password can be set through arguments in the connect string.
Once the connection is open, all of these properties are read-only.

When you declare a stand-alone rdoConnection object or use the EstablishConnection method, the object is not
automatically appended to the rdoConnections collection. Use the Add or Remove methods to add or delete stand-alone

https://msdn.microsoft.com/en-us/Nbrary/aa262749(v=vs.60).aspx 1/4

https://msdn.microsoft.com/en-us/library/aa240071(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240073(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228747(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228746(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240072(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443324(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443525(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262749(v=vs.60).aspx

27. 12. 2017 rdoConnection Object (RemoteData Control)

rdoConnection objects to or from the rdoConnections collection. It is not necessary, however to add an rdoConnection
object to the rdoConnections collection before it can be used to establish a connection.

Note RDO 1.0 collections behave differently than Data Access Object (DAQO) collections. When you Set a variable containing
a reference to a RDO object like rdoResultset, the existing rdoResultset is not closed and removed from the rdoResultsets
collection. The existing object remains open and a member of its respective collection.

In contrast, RDO 2.0 collections do not behave in this manner. When you use the Set statement to assign a variable
containing a reference to an RDO object, the existing object is closed and removed from the associated collection. This
change is designed to make RDO more compatible with DAO.

Asynchronous Operations

Both the EstablishConnection and OpenConnection methods support synchronous, asynchronous, and event-managed
operations. By setting the rdAsyncEnable option, control returns to your application before the connection is established.
Once the StillConnecting property returns False, and the Connect event fires, the connection has either been made or failed
to complete. You can check the success or failure of this operation by examining errors returned through the rdoErrors
collection.

Opening Connections without Data Source Names

In many situations, it is difficult to ensure that a registered Data Source Name (DSN) exists on the target system, and in some
cases it is not advisable to create one. Actually, a DSN is not needed to establish a connection if you are using the default
network protocol (named pipes) and you know the name of the server and ODBC driver. If this is the case, you can establish a
DSN-less connection by following these steps:

1. Set the DSN argument of the connect string to an empty string (DSN =").
2. Include the server name in the connect string.

3. Include the ODBC driver name in the connect string. Since many driver names have more than one word, enclose the
name in curly braces {}.

Note This option is not available if you need to use other than the named pipes network protocol or one of the other DSN-
set options such as OEMTOANSI conversion.

For example, the following code opens a read-only ODBC cursor connection against the SQL Server "SEQUEL" and includes a
simple error handler:

Sub MakeConnection()
Dim rdoCn As New rdoConnection
On Error GoTo CnEh
With rdoCn
.Connect = "UID=;PWD=;Database=WorkDB;"
& "Server=SEQUEL;Driver={SQL Server}"
& "DSN="1"
.LoginTimeout 5
.CursorDriver = rdUseODBC
.EstablishConnection rdDriverNoPrompt, True
End With
Exit Sub
CnEh:
Dim er As rdoError
Debug.Print Err, Error
For Each er In rdoErrors
Debug.Print er.Description, erNumber
Next er
Resume Next
End Sub

https://msdn.microsoftcom/en-us/Nbrary/aa262749(v=vs.60).aspx 2/4

https://msdn.microsoftcom/en-us/Nbrary/aa262749(v=vs.60).aspx

27. 12. 2017 rdoConnection Object (RemoteData Control)

Choosing a Specific Database

Once a connection is established, you can manipulate a database associated with the rdoConnection using the
rdoConnection object and its methods and properties. For servers that support more than one database per connection, the
default database is:

e Assigned to the user name by the database system administrator

e Specified with the DATABASE connect argument used when the rdoConnection is created.

e Specified in the registered ODBC data source entry.

e Selected by using an SQL statement such as USE <database> submitted with an action query.

All queries executed against the server assume this default database unless another database is specifically referenced in
your SQL query.

Preparing for Errors when Connecting

There are a variety of reasons why you might be unable to connect to your remote database. Consider the following

conditions that can typically prevent connections from completing:

e Your server might not have sufficient connection resources due to administrative settings or licensing restrictions.

e Your user might not have permission to access the network, server, or database with the password provided.

e The server, network or WAN bridges might be down or simply running slower than expected.

Closing the rdoConnection

When you use the Close method against an rdoConnection object, any open rdoResultset, or rdoQuery objects are closed.
However, if the rdoConnection object simply loses scope, these objects remain open until the rdoConnection or the objects
are explicitly closed. Closing a connection is not recommended when there are incomplete queries or uncommitted
transactions pending.

Closing a connection also removes it from the rdoConnections collection. However, the rdoConnection object itself is not
destroyed. If needed, you can use the EstablishConnection method to re-connect to the same server using the same
settings, or change the rdoConnection object's properties and then use EstablishConnection to connect to another server.

Closing a connection also instructs the remote server to discard any instance-specific objects associated with the connection.
For example, server-side cursors, temporary tables or any other objects created in the TempDB database on SQL Server are
all dropped.

Working with rdoConnection Methods and Properties

You can manipulate the connection, databases, and queries associated with them using the methods and properties of the
rdoConnection object. For example, you can:

e Use the CursorDriver property to determine the type of cursor requested by result sets created against the
connection.

e Use the OpenResultset method to create a new rdoResultset object.

e Use the LastQueryResults to reference the last rdoResultset created against this connection.

e Use the QueryTimeout or LoginTimeout properties to specify how long the ODBC driver manager should wait
before abandoning a query or connection attempt.

https://msdn.microsoft.com/en-us/library/aa262749(v=vs.60).aspx 3/4

https://msdn.microsoft.com/en-us/library/aa443303(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443531(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262749(v=vs.60).aspx

27. 12. 2017 rdoConnection Object (RemoteData Control)

Use the RowsAffected property to determine how many rows were affected by the last action query.

Use the Execute method to run an action query or pass an SQL statement to a database for execution.

Use the CreateQuery method to create a new rdoQuery object.

Use the Close method to close an open connection, remove the rdoConnection object from the rdoConnections
collection, deallocate the connection handle, and terminate the connection.

Use the Transactions property to determine if the connection supports transactions, which you can implement using
the BeginTrans, CommitTrans, and RollbackTrans methods.

Use the AsyncChecklinterval property to determine how often RDO should poll for a completed asynchronous
operation.

Use the ODBC API with the hDbc property to set connection options.

Use the Connect property to determine the connect argument used in the OpenConnection method, or the Connect
property of the RemoteData control.

rdoConnection Events

The following events are fired as the rdoConnection object is manipulated. These can be used to micro-manage the process

of connecting and disconnecting and provide additional retry handling in query timeout situations.

Event Name Description

BeforeConnect Fired before ODBC is called to establish the connection.

Connect Fired after a connection is established.

Disconnect Fired after a connection has been closed

QueryComplete Fired after a query run against this connection is complete

QueryTimeout Fired after the QueryTimeout period is exhausted.

Addressing the rdoConnection Object

The Name property setting of an rdoConnection specifies the data source name (DSN) parameter used to open the

connection. This property is often empty as it is not used when making a DSN-less connection. In cases where you specify a

different DSN to open each connection, you can refer to any rdoConnection object by its Name property setting using the

following syntax. This code Refers to the connection opened against the Accounting DSN:

rdoConnections("Accounting")

You can also refer to the object by its ordinal number using this syntax (which refers to the first member of the
rdoConnections collection):

rdoConnections(0)

© 2017 Microsoft

https://msdn.microsoft.com/en-us/library/aa262749(v=vs.60).aspx 4/4

https://msdn.microsoft.com/en-us/library/aa241004(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443277(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241019(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241032(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262749(v=vs.60).aspx

27. 12. 2017 rdoConnections Collection (RemoteData Control)

This documentation is archived and is not being maintained.

Visual Basic: RDO Data Control

Visual Studio 6.0

rdoConnections Collection

See Also Example Properties Methods Events

An rdoConnections collection contains all rdoConnection objects opened or created in an rdoEnvironment object of the
remote database engine, or allocated and appended to the rdoConnections collection using the Add method.

Remarks

The rdoConnections collection is used to manage your rdoConnection objects. However, only rdoConnection objects
created using the OpenConnection method, or using the RemoteData control are automatically appended to the collection.
When you allocate a stand-alone rdoConnection object, it is not appended to the rdoConnections collection until you use
the Add method.

Note RDO 1.0 collections behave differently than Data Access Object (DAQO) collections. When you Set a variable containing
a reference to a RDO object like rdoResultset, the existing rdoResultset is not closed and removed from the rdoResultsets
collection. The existing object remains open and a member of its respective collection.

In contrast, RDO 2.0 collections do not behave in this manner. When you use the Set statement to assign a variable
containing a reference to an RDO object, the existing object is closed and removed from the associated collection. This
change is designed to make RDO more compatible with DAO.

Closing rdoConnection Objects

When you use the Close method against an rdoConnection object, any open rdoResultset, or rdoQuery objects are closed
and the rdoConnection object is removed from the rdoConnections collection. However, if the rdoConnection object
simply loses scope, these objects remain open until the rdoConnection or the objects are explicitly closed.

© 2017 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262750(v=vs.60).aspx 71

https://msdn.microsoft.com/en-us/library/aa240069(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240070(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228750(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228749(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443305(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262750(v=vs.60).aspx

27. 12. 2017 rdoEngine Object (RemoteData Control)

This documentation is archived and is not being maintained.

Visual Basic: RDO Data Control

Visual Studio 6.0

rdoEngine Object

See Also Example Properties Methods Events

The rdoEngine object represents the remote data source. As the top-level object, it contains all other objects in the hierarchy
of Remote Data Objects (RDO).

Remarks

The rdoEngine object can represent a remote database engine or another data source managed by the ODBC driver
manager as a database. The rdoEngine object is a predefined object, therefore you can't create additional rdoEngine
objects and it isn't a member of any collection.

The rdoEngine object is used to reference the rdoEnvironments collection, or establish default values for newly created
rdoEnvironment objects. When an rdoEnvironment object is created, its properties are initialized based on the default
values set in the rdoEngine. A default rdoEnvironments(0) object is created automatically when it is first referenced.

The rdoEngine object fires the InfoMessage event when an informational message is returned from the remote data source.
Informational messages are indicated by an ODBC SQL_SUCCESS_WITH_INFO return code. These messages are placed in the
rdoErrors collection. In cases where several messages arrive at once, only a single InfoMessage event is fired after the last
message arrives and has been added to the rdoErrors collection.

Setting Default rdoEnvironment Properties

The following properties establish default settings for all newly-created rdoEnvironment objects. They are also used when

instantiating stand-alone rdoConnection objects.

e Use the rdoDefaultLoginTimeout property to determine the rdoEnvironment object's default LoginTimeout
property used in connection timeout management.

e Use the rdoDefaultCursorDriver property to determine the rdoEnvironment object's default CursorDriver value.
This property determines if the ODBC driver manager creates client batch, local, server-side, or no cursors.

e Use the rdoDefaultUser and rdoDefaultPassword properties to determine the default rdoEnvironment object's
UserName and Password properties. These determine the user name and password when opening connections if no
specific values are supplied.

Working with other rdoEngine Properties and Methods

You can establish the default configuration of new rdoEnvironment objects and create new ODBC data source entries using
the properties and methods of the rdoEngine object. For example, you can:

https://msdn.microsoft.com/en-us/Nbrary/aa262752(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa240074(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262753(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228752(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228751(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241051(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443324(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241001(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443531(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443303(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241011(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262752(v=vs.60).aspx

27. 12. 2017 rdoEngine Object (RemoteData Control)

e Use the rdoEnvironments collection to examine rdoEnvironment objects that have been appended to the collection.
Note that rdoEnvironment objects can be allocated as stand-alone objects.

e Use the rdoLocalelD property to determine which language-localized DLLs are loaded.

e Use the Version property to examine the version of RDO in use.

e Use the rdoErrors collection to examine information about errors generated by the ODBC interface. Errors generated
by Visual Basic are maintained in a separate Errors collection.

e Use the rdoRegisterDataSource method to create a new data source entry in the Windows System Registry.

e Use the rdoCreateEnvironment method to create a new rdoEnvironment object. You can also allocate a new
rdoEnvironment object by coding

Dim MyEnv as New rdoEnvironment

© 2017 Microsoft

https://msdn.microsoftcom/en-us/Nbrary/aa262752(v=vs.60).aspx 2/2

https://msdn.microsoftcom/en-us/Nbrary/aa262752(v=vs.60).aspx

27. 12. 2017

rdoEngine Object Example (RemoteData Control)

Visual Basic: RDO Data Control

rdoEngine Object Example

This example sets a number of rdoEngine properties and creates a customized rdoEnvironment object based on these new

default settings. Note that while your code can set a password in an rdoEnvironment object, it cannot be read once it is set.

Dim en As rdoEnvironment

Private Sub Form_Load()

With rdoEngine
rdoDefaultLoginTimeout 20
rdoDefaultCursorDriver = rdUseOdbc
rdoDefaultUser = "Fred"

rdoDefaultPassword =
End With
Set en = rdoEnvironments(0)

Dump current rdoEnvironments collection
and display current properties where
possible.

For Each en In rdoEnvironments
Debug.Print "LoginTimeout:" & en.LoginTimeout
Debug.Print "CursorDriver:" & en.CursorDriver
Debug.Print "User:" & en.UserName

Next

End Sub

© 2017 Microsoft

https://msdn.microsoft.com/en-us/library/aa262753(v=vs.60).aspx

(Write-only) Debug.Print "Password:" & en.Password

171

https://msdn.microsoft.com/en-us/library/aa262753(v=vs.60).aspx

27. 12. 2017 rdoEnvironment Object (RemoteData Control)

This documentation is archived and is not being maintained.

Visual Basic: RDO Data Control

Visual Studio 6.0

rdoEnvironment Object

See Also Example Properties Methods Events

An rdoEnvironment object defines a logical set of connections and transaction scope for a particular user name. It contains
both open and allocated but unopened connections, provides mechanisms for simultaneous transactions, and provides a
security context for data manipulation language (DML) operations on the database.

Remarks

Generally, an rdoEnvironment object corresponds to an ODBC environment that can be referred to by the rdoEnvironment
object's hEnv property. However, if the Name argument is not provided when the rdoEnvironment object is created by the
rdoCreateEnvironment method, a stand-alone rdoEnvironment is created that is not added to the rdoEnvironments
collection. Stand-alone rdoEnvironment objects are not exposed to other in-process DLLs unless specifically designated as
public. If the reference count for any private rdoEnvironment is reduced to zero, all rdoConnections associated with the
rdoEnvironment are closed.

Once you set the properties of an rdoEnvironment object, you can use the Add method to append it to the
rdoEnvironments collection or the Remove method to detach and deallocate the object. The Name property is read-only
and is determined by the specific remote data object.

The default rdoEnvironment is created automatically when the RemoteData control is initialized, or the first remote data
object is referenced in code. The Name property of rdoEnvironments(0) is "Default_Environment". The user name and
password for rdoEnvironments(0) are both "

rdoEnvironment objects can be created with the rdoCreateEnvironment method of the rdoEngine object which
automatically appends the new object to the rdoEnvironments collection. All rdoEnvironment objects created in this
manner are assigned properties based on the default properties set in the rdoEngine object.

The user name and password information from the rdoEnvironment is used to establish the connection if these values are
not supplied in the connect argument of the OpenConnection method, or in the Connect property of the RemoteData
control.

All rdoEnvironment objects share a common hEnv value that is created on an application basis. Use the rdoEnvironment
object to manage the current ODBC environment, or to start an additional connection. In an rdoEnvironment, you can open
multiple connections, manage transactions, and establish security based on user names and passwords. For example, you
can:

e Create an rdoEnvironment object using the Name, Password, and UserName properties to establish a named,
password-protected environment. The environment creates a scope in which you can open multiple connections and

https://msdn.microsoft.com/en-us/Nbrary/aa262754(v=vs.60).aspx 1/3

https://msdn.microsoft.com/en-us/library/aa240077(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240079(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228754(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228753(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240078(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443293(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241032(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443318(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443303(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443523(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240989(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443302(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262754(v=vs.60).aspx

27. 12. 2017 rdoEnvironment Object (RemoteData Control)

conduct one instance of coordinated transactions.

e Use the CursorDriver property to determine which cursor driver library is used to build rdoResultset objects. You can
choose one of four types of cursors, or set the CursorDriver property to rdUseNone to indicate that no cursor is to
be used to manage result sets.

e Use the OpenConnection method to open one or more existing connections in that rdoEnvironment.

e Use the LoginTimeout property to determine how long the ODBC drivers should wait before abandoning the
connection attempt.

e Use the BeginTrans, CommitTrans, and RollbackTrans methods to manage transaction processing within an
rdoEnvironment across several connections.

e Use several rdoEnvironment objects to conduct multiple, simultaneous, independent, and overlapping transactions.

e Use the Close method to terminate an environment and the connection and remove the rdoEnvironment object
from the rdoEnvironments collection. This also closes all connections associated with the object.

Managing Transactions

The rdoEnvironment also determines transaction scope. Committing an rdoEnvironment transaction commits all open
rdoConnection databases and their corresponding open rdoResultset objects. This does not imply a two-phase commit
operation simply that individual rdoConnection objects are instructed to commit any pending operations one at a time.

For Microsoft SQL Server databases, the Distributed Transaction Coordinator (DTC) can be used to manage blocks of
transactions simply by introducing the SQL query with the BEGIN DISTRIBUTED TRANSACTION statement. DTC facilitates the
creation of network-wide database updates through its own two-phase commit protocol. Whenever SQL Server commits a
transaction, the DTC ensures all related resources also commit the transaction. If any part of the transaction fails, the DTC
ensures that the entire transaction is rolled back across all enlisted servers.

When you use transactions, all databases in the specified rdoEnvironment are affected even if multiple rdoConnection
objects are opened in the rdoEnvironment. For example, suppose you use a BeginTrans method against one of the
databases visible from the connection, update several rows in the database, and then delete rows in another rdoConnection
object's database. When you use the RollbackTrans method, both the update and delete operations are rolled back. To
avoid this problem, you can create additional rdoEnvironment objects to manage transactions independently across
rdoConnection objects. Note that transactions executed by multiple rdoEnvironment objects are serialized and are not
atomic operations. Because of this, their success or failure is not interdependent. This is an example of batched transactions.

You can execute nested transactions only if your data source supports them. For example, on a single connection, you can
execute a BEGIN TRANS SQL statement, execute several UPDATE queries, and another BEGIN TRANS statement. Any
operations executed after the second BEGIN TRANS SQL statement can be rolled back independently of the statements
executed after the first BEGIN TRANS. This is an example of nested transactions. To commit the first set of UPDATE
statements, you must execute a COMMIT TRANS statement, or a ROLLBACK TRANS statement for each BEGIN TRANS
executed.

rdoEnvironment Events

The following events are fired as the rdoEnvironment object is manipulated. These can be used to micro-manage RDO
transactions associated with the rdoEnvironment or to synchronize some other process with the transaction.

Event Name Description

BeginTrans Fired after the BeginTrans method has completed.

CommitTrans Fired after the CommitTrans method has completed.

RollbackTrans Fired after the RollbackTrans method has completed.

https://msdn.microsoftcom/en-us/Nbrary/aa262754(v=vs.60).aspx 2/3

https://msdn.microsoft.com/en-us/library/aa241033(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241004(v=vs.60).aspx
https://msdn.microsoftcom/en-us/Nbrary/aa262754(v=vs.60).aspx

27. 12. 2017 rdoEnvironment Object (RemoteData Control)

Addressing rdoEnvironment Objects

The Name property of rdoEnvironment objects is set from the name argument passed to the rdoCreateEnvironment
method. You can refer to any other rdoEnvironment object by specifying its Name property setting using this syntax:

rdoEnvironments("MyEnvName")
or simply:
rdoEnvironments!MyEnvName

You can also referto rdoEnvironment objects by their position in the rdoEnvironments collection using this syntax (where
n is the nth member of the zero-based rdoEnvironments collection):

rdoEngine.rdoEnvironments(n)
or simply:

rdoEnvironments(n)

© 2017 Microsoft

https://msdn.microsoft.com/en-us/library/aa262754(v=vs.60).aspx 3/3

https://msdn.microsoft.com/en-us/library/aa262754(v=vs.60).aspx

27. 12. 2017 rdoEnvironments Collection (RemoteData Control)

This documentation is archived and is not being maintained.

Visual Basic: RDO Data Control

Visual Studio 6.0

rdoEnvironments Collection

See Also Example Properties Methods Events

The rdoEnvironments collection contains all active rdoEnvironment objects of the rdoEngine object.

Remarks

rdoEnvironment objects are created with the rdoCreateEnvironment method of the rdoEngine object. Newly created
rdoEnvironment objects are automatically appended to the rdoEnvironments collection unless you do not provide a name
for the new object when using the rdoCreateEnvironment method or simply declare a new rdoEnvironment object in code.

The rdoEnvironments collection is automatically initialized with a default rdoEnvironment object based on the default
properties set in the rdoEngine object.

If you use the Close method against an rdoEnvironment object, all rdoConnections it contains are closed and the object is
removed from the rdoEnvironments collection.

© 2017 Microsoft

https://msdn.microsoftcom/en-us/Nbrary/aa262755(v=vs.60).aspx 71

https://msdn.microsoft.com/en-us/library/aa240075(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240076(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228756(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228755(v=vs.60).aspx
https://msdn.microsoftcom/en-us/Nbrary/aa262755(v=vs.60).aspx

29. 12. 2017 rdoEnvironment Object, rdoEnvironments Collection Example (RemoteData Control)

Visual Basic: RDO Data Control

rdoEnvironment Object, rdoEnvironments
Collection Example

The following example illustrates creation of the rdoEnvironment object and its subsequent use to open an rdoConnection

object.

Private Sub rdoEnvironmentButton_ClickQ
Dim en As rdoEnvironment

Dim cn As rdoConnection

Set en = rdoEngine.rdoEvironments(0)
With en

en.CursorDriver = rdUseOdbc

en.LoginTimeout =5

en.Name = "TransOpl"

Set cn = en.OpenConnection(dsname:="",
prompt:=rdDriverNoProm pt,
Connect:="UID=;PWD=;" _
driver={SQL Server};Server=SEQUEL;",
Options:=rdAsyncEnable)

End With
Print "Connecting ",
While cn.StillConnecting
Print ".";
DoEvents
Wend
Print "done."

End Sub

© 2017 Microsoft

https://msdn.microsoftcom/en-us/library/aa262756(v=vs.60).aspx

171

https://msdn.microsoftcom/en-us/library/aa262756(v=vs.60).aspx

27. 12. 2017 rdoError Object (RemoteData Control)

This documentation is archived and is not being maintained.

Visual Basic: RDO Data Control

Visual Studio 6.0

rdoError Object

See Also Example Properties Methods Events

Contains details about remote data access errors.

Remarks

Any operation involving remote data objects can potentially generate one or more ODBC errors or informational messages.
As each error occurs or as messages are generated, one or more rdoError objects are placed in the rdoErrors collection of
the rdoEngine object. When a subsequent RDO operation generates an error, the rdoErrors collection is cleared, and the
new set of rdoError objects is placed in the rdoErrors collection. RDO operations that don't generate an error have no effect
on the rdoErrors collection. To make error handling easier. you can use the Clear method to purge the rdoErrors collection
between operations.

Generally, all ODBC errors generate a trappable Visual Basic error of some kind. This is your cue to check the contents of the
rdoErrors collection for any and all errors resulting from the last operation which provide specific details on the cause of the

error.

Not all errors generated by ODBC are fatal. In the normal course of working with connections, default databases, stored
procedure print statements and other operations, the remote server often returns warnings or messages that are usually safe
to ignore. When an informational message arrives, the rdoEngine InfoMessage event is fired. You should examine the
rdoErrors collection in this event procedure.

If the severity of the error number is below the error threshold as specified in either the rdoDefaultErrorThreshold or
ErrorThreshold property, then a trappable error is triggered when the error is detected. Otherwise, an rdoError object is
simply appended to the rdoErrors collection. To control trappable errors in Microsoft SQL Server, you should use the
Transact SQL RAISERROR statement coupled with an appropriate Severity argument to indicate the error or other
information.

Use the rdoError object to determine the type and severity of any errors generated by the RemoteData control or RDO
operations. For example, you can:

e Use the Description property to display a text message describing the error.
e Use the Number property to determine the native data source error number.
e Use the Source property to determine the source of the error and the object class causing the error.

e Use the SQLRetCode and SQLState properties to determine the ODBC return code and SQLState flags.

https://msdn.microsoft.com/en-us/Nbrary/aa262757(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa240081(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240082(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228757(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443302(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443324(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443523(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262757(v=vs.60).aspx

27. 12. 2017 rdoError Object (RemoteData Control)

e Use the Clear method on the rdoErrors collection to remove all rdoError objects. In most cases, it is not necessary to
use the Clear method because the rdoErrors collection is cleared automatically when a new error occurs.

Members of the rdoErrors collection aren't appended as is typical with other collections. The most general errors are placed
at the end of the collection (Count -1), and the most detailed errors are placed at index 0. Because of this implementation,
you can often determine the root cause of the failure by examining rdoErrors(0).

The set of rdoError objects in the rdoErrors collection describes one error. The first rdoError object is the lowest level error,
the second is the next higher level, and so forth. For example, if an ODBC error occurs while the RemoteData control tries to
create an rdoResultset object, the last rdoError object contains the RDO error indicating the object couldn't be opened. The
first error object contains the lowest level ODBC error. Subsequent errors contain the ODBC errors returned by the various
layers of ODBC. In this case, the driver manager, and possibly the driver itself, returns separate errors which generate
rdoError objects.

The rdoErrors collection is also used to manage informational messages returned by the data source. For example, messages
returned back from PRINT statements, showplan requests, or DBCC operations in SQL Server are returned as rdoError
objects in the rdoErrors collection. This type of message causes the InfoMessage event to fire, but does not trip a trappable
error. Because of this, you must check the rdoErrors collection's Count property to see if any new errors have arrived.

© 2017 Microsoft

https://msdn.microsoftcom/en-us/Nbrary/aa262757(v=vs.60).aspx 2/2

https://msdn.microsoftcom/en-us/Nbrary/aa262757(v=vs.60).aspx

27. 12. 2017 rdoErrors Collection (RemoteData Control)

This documentation is archived and is not being maintained.

Visual Basic: RDO Data Control

Visual Studio 6.0

rdoErrors Collection

See Also Example Properties Methods Events

Contains all stored rdoError objects which pertain to a single operation involving Remote Data Objects (RDO).

Remarks

Any operation involving remote data objects can generate one or more errors. As each error occurs, one or more rdoError
objects are placed in the rdoErrors collection of the rdoEngine object. When another RDO operation generates an error, the
rdoErrors collection is cleared, and the new set of rdoError objects is placed in the rdoErrors collection. RDO operations
that don't generate an error have no effect on the rdoErrors collection.

e Use the Clear method on the rdoErrors collection to remove all rdoError objects. In most cases, it is not necessary to
use the Clear method because the rdoErrors collection is cleared automatically when a new error occurs.

Members of the rdoErrors collection aren't appended as is typical with other collections. The most general errors are placed
at the end of the collection (Count -1), and the most detailed errors are placed at index 0. Because of this implementation,
you can determine the root cause of the failure by examining rdoErrors(0).

The set of rdoError objects in the rdoErrors collection describes one error. The first rdoError object is the lowest level error,
the second is the next higher level, and so forth. For example, if an ODBC error occurs while the RemoteData control tries to
create an rdoResultset object, the last rdoError object contains the RDO error indicating the object couldn't be opened. The
first error object contains the lowest level ODBC error. Subsequent errors contain the ODBC errors returned by the various
layers of ODBC. In this case, the driver manager, and possibly the driver itself, returns separate errors which generate
rdoError objects.

© 2017 Microsoft

https://msdn.microsoftcom/en-us/Nbrary/aa262758(v=vs.60).aspx 71

https://msdn.microsoft.com/en-us/library/aa262757(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240080(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228758(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241279(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241001(v=vs.60).aspx
https://msdn.microsoftcom/en-us/Nbrary/aa262758(v=vs.60).aspx

27. 12. 2017 rdoError Object, rdoErrors Collection Example (RemoteData Control)

Visual Basic: RDO Data Control

rdoError Object, rdoErrors Collection
Example

The following code illustrates a simple design-time RDO error handler. Note that the handler simply displays the errors in the

rdoErrors collection in the Immediate window.

Dim er as rdoError
On Error GoTo CnEh

CnEh:
Dim er As rdoError
Debug.Print Err, Error
For Each er In rdoErrors
Debug.Print er.Description, erNumber
Next er
Resume Next

© 2017 Microsoft

https://msdn.microsoftcom/en-us/library/aa262759(v=vs.60).aspx

171

https://msdn.microsoftcom/en-us/library/aa262759(v=vs.60).aspx

27. 12. 2017 rdoParameter Object (RemoteData Control)

This documentation is archived and is not being maintained.

Visual Basic: RDO Data Control

Visual Studio 6.0

rdoParameter Object

See Also Example Properties Methods Events

An rdoParameter object represents a parameter associated with an rdoQuery object.

Remarks

When working with stored procedures or SQL queries that require use of arguments that change from execution to
execution, you should create an rdoQuery object to manage the query and its parameters. For example, if you submit a
query that includes information provided by the user such as a date range, or part number, RDO and the ODBC interface can
insert these values automatically into the SQL statement at specific positions in the query.

Providing Parameters

Your query's parameters can be provided in a number of ways:

Note

As hard-coded arguments in the SQL query string.
"Select Name from Animals Where ID = 'Cat""
As concatenated text or numeric values extracted from TextBox, Label or other controls.

"Select Name from Animals Where ID = '
& IDWanted.Text & ..

As the question mark (?) parameter placeholders.
"Select Name from Animals Where ID = ?"

As the question mark (?) parameter placeholders in a stored procedure call that accepts input, output and/or return
status arguments.

"{ 2 =cCall MySP (2, 2, 2) }"

Stored procedure invocations that use the Call syntax (as shown above) are executed in their "native" format so they

do not require parsing and data conversion by the ODBC Driver Manager. Because of this the Call syntax can be executed

somewhat faster than other syntaxes.

Using Parameter Markers

The only time you must use parameter markers is when executing stored procedures that require input, output or return
status arguments. If the stored procedure only requires input arguments, these can be provided in-line as imbedded values

https://msdn.microsoft.com/en-us/Nbrary/aa262761(v=vs.60).aspx

1/4

https://msdn.microsoft.com/en-us/library/aa240085(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240086(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228759(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241273(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240569(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262761(v=vs.60).aspx

27. 12. 2017 rdoParameter Object (RemoteData Control)

concatenated into the query (as shown below).

When the rdoParameter collection is first referenced (but not before) RDO and the ODBC interface pre-processes the query,
and creates an rdoParameter object for each marked parameter. You can also create queries with multiple parameters, and
in this case you can mark some parameters and provide the others by hard-coding or concatenation in any combination.
However, all marked parameters must appear to the left of all other parameters. If you don't, a trappable error occurs
indicating "Wrong number of parameters".

Note Due to the extra overhead involved in creating and managing rdoQuery objects and their rdoParameters collection,
you should not use parameter queries for SQL statements that do not change from execution to execution especially those
that are executed only once or infrequently.

Marking Parameters

Each query parameter that you want to have RDO manage must be indicated by a question mark (?) in the text of the SQL
statement, and correspond to an rdoParameter object referenced by its ordinal number counting from zero left to right. For
example, to execute a query that takes a single input parameter, your SQL statement would look something like this:

SQL$ = "Select Au_Lname, Au_Fname where Au_ID Like ? "
Dim gd as rdoQuery, rd as rdoResultset

Set qd = CreateQuery ("SeekAUID", SQLS$)

qd(0) = "236-66-%"

set rd = qd.OpenResultset(rdOpenForwardOnly)

Note You can also create an rdoQuery object using the Query Connection designer and name and set the data type and
direction of individual parameters.

Acceptable Parameters

Not all types of data are passable as parameters. For example you cannot always use a TEXT or IMAGE data type as an
OUTPUT parameter. In addition, if your query does not require parameters or has no parameters in a specific invocation of
the query, you cannot use parenthesis in the query. For example, for a stored procedure that does not require parameters
could be coded as follows:

"{ 2 =cCall MySP }"

When submitting queries that return output parameters, these parameters must be submitted at the end of the list of your
query's parameters. While it is possible to provide both marked and unmarked (in-line) parameters, your output parameters
must still appear at the end of the list of parameters.

All in-line parameters must be provided to the right of marked parameters. If this is not the case, RDO returns an error
indicating "Wrong number of parameters".

RDO 2.0 supports BLOB data types as parameters and you also can use the AppendChunk method against the
rdoParameter object to pass TEXT or IMAGE data types as parameters into a procedure.

Identifying the Parameter's Data Type

When your parameter query is processed by ODBC, it attempts to identify the data type of each parameter by executing
ODBC functions that query the remote server for specific information about the query. In some cases, the data type cannot
be correctly determined. In these cases, use the Type property to set the correct data type or create a custom query using
the User Connection Designer.

For example, in the following query, the parameter passed to the TSQL Charindex function is typed as an integer. While this
is correct for the function itself, the parameter is referencing a string argument of the TSQL function, so it must be set to an
ODBC character type to work properly.

Dim SQL as string, qd as rdoQuery
SQL = "Select * From Titles " _

https://msdn.microsoftcom/en-us/Nbrary/aa262761(v=vs.60).aspx 2/4

https://msdn.microsoftcom/en-us/Nbrary/aa262761(v=vs.60).aspx

27. 12. 2017 rdoParameter Object (RemoteData Control)

& "Where Charindex(?, Title) >0
Set qd = cn.CreateQueryC'FindTitle", SQL)
qd(0).Type = rdTypeChar

Note You do not have to surround text parameters with quotes as this is handled automatically by the ODBC API interface.
Handling Output and Return Status Arguments

In some cases, a stored procedure returns an output or return status argument instead of or in addition to any rows returned
by a SELECT statement. Each of these parameters must also be marked in the SQL statement with a question mark. Using this
technique, you can mark the position of any number of parameters in your SQL query including input, output or
input/output.

Whenever your query returns output or return status arguments, you must use the ODBC CALL syntax when setting the SQL
property of the rdoQuery object. In this case, a typical stored procedure call would look like this:

Dim qgd as rdoQuery, rd as rdoResultset, SQL as String

SQL = "{ ? =Call master.sp_password (?, ?) }"
Set qd = CreateQuery ("SetPassword", SQL)
qd.rdoParameters(0).Direction = rdParamReturnValue
qd(1l) = "Fred" ' the old password

qd(2) = "George"
set rd = qd.Execute
if gd(0) < 0 then _

MsgBox "Operation failed™

the new password

Tip Be sure to specifically address stored procedures that do not reside in the current (default) database. In this example,
the default database is not Master where the sp_password procedure is maintained, so this procedure is specifically
addressed.

When control returns to your application after the procedure is executed, the rdoParameter objects designated as
rdParamReturnValue, rdParamOQutput or rdParamInputOutput contain the returned argument values. In the example
shown above, the return status is available by examining qd(0)after the query is executed.

Using Other Properties

Using the properties of an rdoParameter object, you can set a query parameter that can be changed before the query is run.
You can:

e Use the Direction property setting to determine if the parameter is an input, output, or input/output parameter, or a
return value. In RDO 2.0, the Direction property is usually set automatically, so it is unnecessary to set this value. It is
also unnecessary to set it for input parameters which is the default value.

e Use the Type property setting to determine the data type of the rdoParameter. Data types are identical to those
specified by the rdoColumn.Type property. In some cases, RDO might not be able to determine the correct
parameter data type. In these cases, you can force a specific data type by setting the Type property.

e Use the Value property (the default property of an rdoParameter) to pass values to the SQL queries containing
parameter markers used in rdoQuery.Execute or rdoQuery.OpenResultset methods. For example:

MyQuery(0) =5

Note RDO requires that your ODBC driver support a number of Level Il compliant options and support the
SQLNumParams, SQLProcedureColumns and SQLDescribeParam ODBC API functions in order to be able to create the
rdoParameters collection and parse parameter markers in SQL statements. While some drivers can be used to create and
execute queries, if your driver does not support creation of the rdoParameters collection, RDO fails quietly and simply does
not create the collection. As a result, any reference to the collection results in a trappable error.

Addressing the Parameters

https://msdn.microsoft.com/en-us/library/aa262761(v=vs.60).aspx 3/4

https://msdn.microsoft.com/en-us/library/aa240771(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443326(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241026(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262761(v=vs.60).aspx

27. 12. 2017 rdoParameter Object (RemoteData Control)

By default, members of the rdoParameters collection are named "Parametem" where n is the rdoParameter object's ordinal
number. For example, if an rdoParameters collection has two members, they are named "Parameter0" and "Parameterl".
However, if you use the User Connection Designer, you can specify hames for specific parameters.

Because the rdoParameters collection is the default collection for the rdoQuery object, addressing parameters is easy.
Assuming you have created an rdoQuery object referenced by rdoQo, you can refer to the Value property of its
rdoParameter objects by:

« Referencing the Name property setting using this syntax:

' Refers to PubDate parameter
rdoQo("PubDate")

-Or-
' Refers to PubDate parameter
rdoQo!PubDate
« Referencing its ordinal position in the rdoParameters collection using this syntax:

' Refers to the first parameter marker
rdoQo(0)

© 2017 Microsoft

https://msdn.microsoft.com/en-us/library/aa262761(v=vs.60).aspx 4/4

https://msdn.microsoft.com/en-us/library/aa262761(v=vs.60).aspx

27. 12. 2017 rdoParameters Collection (RemoteData Control)

This documentation is archived and is not being maintained.

Visual Basic: RDO Data Control

Visual Studio 6.0

rdoParameters Collection

See Also Example Properties Methods Events

An rdoParameters collection contains all the rdoParameter objects of an rdoQuery object.

Remarks

The rdoParameters collection provides information only about marked parameters in an rdoQuery object or stored
procedure. You can't append objects to or delete objects from the rdoParameters collection.

When the rdoParameters collection is first referenced, RDO and the ODBC interface parse the query searching for parameter
markers the question mark (?). For each marker found, RDO creates an rdoParameter object and places it in the
rdoParameters collection. However, if the query cannot be compiled or otherwise processed, the rdoParameters collection
is not created and your code will trigger a trappable error indicating that the object does not exist. In this case, check the
query for improper syntax, permissions on underlying objects, and proper placement of parameter markers.

© 2017 Microsoft

https://msdn.microsoftcom/en-us/Nbrary/aa262762(v=vs.60).aspx 71

https://msdn.microsoft.com/en-us/library/aa240083(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240084(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228760(v=vs.60).aspx
https://msdn.microsoftcom/en-us/Nbrary/aa262762(v=vs.60).aspx

27. 12. 2017 rdoParameter Object, rdoParameters Collection Example (RemoteData Control)

Visual Basic: RDO Data Control

rdoParameter Object, rdoParameters
Collection, Direction Property Example

This example executes a stored procedure against the SQL Server 'Pubs database. The procedure text is also included here so
you can setup this example on your own machine. The stored procedure expects your code to provide three input
arguments: A string to use in an expression to choose the title, and two numbers used to choose a price range for the books.
The procedure returns the number of books that fall in the range, and the maximum price of the books. It also returns a set
of rows containing detailed information about the books.

To establish the connection, we assume the name of the server is "SEQUEL" and it is a Microsoft SQL Server this is a DSN-less
connection. Next, we use the ODBC CALL syntax to prepare the query. Notice that each parameter is marked with a question
mark. Once, marked, the rdoParameters collection is used to set the direction for the output and return value parameters
and the initial values for the input parameters. While you don't see the rdoParameters collection called out specifically,
understand that it is the default collection of the rdoQuery object so references are made simpler by not including a
reference to the rdoParameters collection itself.

Sub RunQuery_Click()

Dim rs As rdoResultset

Dim cn As New rdoConnection
Dim gd As New rdoQuery

Dim cl| As rdoColumn

Const None As String =

cn.Connect = "uid=;pwd=;server=SEQUEL;" _
& "driver={SQL Server},database=pubs;
& "DSN="4"

cn.CursorDriver = rdUseOdbc

cn.EstablishConnection rdDriverNoPrompt

Set gqd.ActiveConnection = cn
gqd.sQL = "{ ? = Call ShowOutputRS (?,?,?,?,?) }
qd(0).Direction = rdParamReturnValue

gqd(4).Direction = rdParamOutput
gd(5).Direction = rdParamOutput
qd(1) = "c"

qd(2) =5

gd(3) = 50

Set rs = gd.OpenResultset(rdOpenForwardOnly,
rdConcurReadOnly)

For Each cl In rs.rdoColumns
Debug.Print cl.Name,

Next

Debug.Print

Do Until rs.EOF
For Each cl In rs.rdoColumns
Debug.Print cl.Value,
Next
rs.MoveNext

https://msdn.microsoft.com/en-us/library/aa262763(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa262763(v=vs.60).aspx

27. 12. 2017 rdoParameter Object, rdoParameters Collection Example (RemoteData Control)

Debug.Print
Loop

Debug.Print "Output from SP="; qd(3)
Debug.Print "Return Status from SP="; qd(0)

rs.Close
qd.Close

cn.Close

End Sub

This is the stored procedure that is executed by the example shown above.

CREATE PROCEDURE ShowOutputRS

(@Ser varChar(128),
@PriceLow Integer,
@ PriceHigh Integer,
@Hits Integer OUTPUT,
@MaxPrice integer OUTPUT
)
AS
Select @MaxPrice = Max(Price) from Titles
where Charindex(@ Ser, title) >0
and price between @priceLow and @ priceHigh

Select * from Titles
where Charindex(@ Ser, title) >0
and price between @priceLow and @PriceHigh

Select @Hits = @@RowCount

return @@ROWCOUNT

© 2017 Microsoft

https://msdn.microsoftcom/en-us/library/aa262763(v=vs.60).aspx

212

https://msdn.microsoftcom/en-us/library/aa262763(v=vs.60).aspx

27. 12. 2017 rdoPreparedStatement Object (RemoteData Control)

This documentation is archived and is not being maintained.

Visual Basic: RDO Data Control

Visual Studio 6.0

rdoPreparedStatement Object

See Also Example Properties Methods Events

An rdoPreparedStatement object is a prepared query definition.

Remarks

Note The rdoPreparedStatement object is outdated and only maintained for backward compatibility. It should be

replaced with the rdoQuery object. The rdoQuery object supports all of the rdoPreparedStatement object's properties and
methods. In contrast, the rdoPreparedStatement only a subset of the rdoQuery object's properties and methods and none

of its events.

© 2017 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262764(v=vs.60).aspx

171

https://msdn.microsoft.com/en-us/library/aa240088(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240089(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228762(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228761(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240771(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262764(v=vs.60).aspx

27. 12. 2017 rdoPreparedStatements Collection (RemoteData Control)

This documentation is archived and is not being maintained.

Visual Basic: RDO Data Control

Visual Studio 6.0

rdoPreparedStatements Collection

See Also Example Properties Methods Events

An rdoPreparedStatements collection contains all rdoPreparedStatement objects in an rdoConnection.

Remarks

Note The rdoPreparedStatements collection is outdated and maintained for compatibility. It should be replaced with the
rdoQueries collection. The rdoQuery object and rdoQueries collection supports all of the rdoPreparedStatement object's
properties and methods. In contrast, the rdoPreparedStatement supports only a subset of the rdoQuery object's
properties and methods and none of its events.

Note RDO requires that your ODBC driver support a number of Level Il options and support the SQLNumParams,
SQLProcedureColumns and SQLDescribeParam ODBC API functions in order to be able to create the rdoParameters
collection and parse SQL statement parameter markers. While some drivers can be used to create and execute queries, if
your driver does not support creation of the rdoParameters collection, RDO fails quietly and simply does not create the
collection.

© 2017 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262765(v=vs.60).aspx

171

https://msdn.microsoft.com/en-us/library/aa240087(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228763(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262765(v=vs.60).aspx

27. 12. 2017 rdoQueries Collection (RemoteData Control)

This documentation is archived and is not being maintained.

Visual Basic: RDO Data Control

Visual Studio 6.0

rdoQueries Collection

See Also Example Properties Methods Events

Contains rdoQuery objects that have been added to the rdoQueries collection either automatically via the CreateQuery
method, or with the Add method.

Remarks

An rdoQuery object is automatically appended to the rdoQueries collection when you use the CreateQuery method of the
rdoConnection object. You can also use the Add method against the rdoQueries collection supplying a stand-alone
rdoQuery object as the argument.

When you use the Close method against and rdoQuery object, it is removed from the rdoQueries collection, but the object
remains instantiated. By resetting the ActiveConnection property, you can associate the rdoQuery object with another
connection and use the Add method to append it to the rdoQueries collection.

An rdoQuery object need not be a member of the rdoQueries collection before it can be associated with an rdoConnection
object and used with the Execute or OpenResultset methods.

© 2017 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262766(v=vs.60).aspx 71

https://msdn.microsoft.com/en-us/library/aa240090(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262768(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228764(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262766(v=vs.60).aspx

28. 12. 2017 rdoQuery Object, rdoQueries Collection Example (RemoteData Control)

Visual Basic: RDO Data Control

rdoQuery Object, rdoQueries Collection

Example

This example leverages RDO's ability to set the data type of individual arguments of a query. In this case, a CHARINDEX
function argument is passed as a parameter. Since the ODBC driver does not recognize this data type correctly, we simply
change it to CHAR before assigning a value to the parameter. The query itself uses TSQL syntax it does not need to use the
ODBC CALL syntax as it does not execute a parameter-based stored procedure. This example also creates a DSN-less
connection to a Microsoft SQL Server and uses the sample Pubs database.

Private Sub Queryl_Click()
Dim rs As rdoResultset

Dim cn As New rdoConnection
Dim gd As New rdoQuery

Dim cl| As rdoColumn

Const None As String = ""

cn.Connect = "uid=;pwd=;server=SEQUEL;" _
& "driver={SQL Server},database=pubs;"
& "DSN=":"

cn.CursorDriver = rdUseOdbc
cn.EstablishConnection rdDriverNoPrompt

Set gqd.ActiveConnection = cn
gqd.SQL = "Select * From Titles"
& " Where Charindex(?, Title) > 0"

qd(0).Type = rdTypeCHAR

qd(0) = InputBox("Enter search string", , "C")

Set rs = gd.OpenResultset(rdOpenForwardOnly,

For Each cl In rs.rdoColumns
Debug.Print cl.Name,

Next

Debug.Print

Do Until rs.EOF

For Each cl In rs.rdoColumns
Debug.Print cl.Value,

Next
rs.MoveNext

Debug.Print

Loop

End Sub

© 2017 Microsoft

https://msdn.microsoft.com/en-us/library/aa262768(v=vs.60).aspx

rdConcurReadOnly)

171

https://msdn.microsoft.com/en-us/library/aa262768(v=vs.60).aspx

27. 12. 2017 rdoQuery Object (RemoteData Control)

This documentation is archived and is not being maintained.

Visual Basic: RDO Data Control

Visual Studio 6.0

rdoQuery Object

See Also Example Properties Methods Events

An rdoQuery object is a query definition that can include zero or more parameters.

Remarks

The rdoQuery object is used to manage SQL queries requiring the use of input, output or input/output parameters. Basically,
an rdoQuery functions as a compiled SQL statement. When working with stored procedures or queries that require use of
arguments that change from execution to execution, you can create an rdoQuery object to manage the query parameters. If
your stored procedure returns output parameters or a return value, or you wish to use rdoParameter objects to handle the
parameters, you must use an rdoQuery object to manage it. For example, if you submit a query that includes information
provided by the user such as a date range or part number, RDO can substitute these values automatically into the SQL
statement when the query is executed.

Note The rdoQuery object replaces the outdated rdoPreparedStatement object. The rdoQuery object remains similar to
the rdoPreparedStatement in its interface, but adds the ability to be persisted into a Visual Basic project, allowing you to
create and manipulate it at design time. Additionally, the rdoQuery objects can be prepared or not, allowing the you to
choose the most appropriate use of the query.

Creating rdoQuery Objects

To create an rdoQuery object, use the CreateQuery method which associates the rdoQuery with a specific rdoConnection
object and adds it to the rdoQueries collection. Once created, you must fill in required parameters using the rdoParameters
collection, and then use the OpenResultset method to create resultsets from the query, or the Execute method to simply
run the query if it does not return rows.

You can also use the User Connection Designer (CQD) to create rdoQuery objects in your project. The CQD takes your SQL
query and permits you to specify the data types for each parameter. It then inserts appropriate code in your application to
expose these procedures very much like methods off of the rdoQuery object.

Note Due to the extra overhead involved in creating and managing rdoQuery objects and the rdoParameters collection,
you should not use parameter queries for SQL statements that do not change from execution to execution especially those
that are executed only once or infrequently.

Stand Alone rdoQuery Objects

You can declare a stand-alone rdoQuery object using the Dim statement as follows:

https://msdn.microsoft.com/en-us/Nbrary/aa262767(v=vs.60).aspx 1/4

https://msdn.microsoft.com/en-us/library/aa240091(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240093(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228766(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228765(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240092(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240771(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241019(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262767(v=vs.60).aspx

27. 12. 2017 rdoQuery Object (RemoteData Control)

Dim MyQuery as New rdoQuery

Stand-alone rdoQuery objects are not assignhed to a specific rdoConnection object, so you must set the ActiveConnection

property before attempting to execute the query, or to use the OpenResultset object against it. The CursorType and

ErrorThreshold properties are set from default values established by the rdoEngine default settings. In addition, new

rdoQuery objects are not automatically appended to the rdoQueries collection until you use the Add method.

For example, the code shown below creates an rdoQuery object, associates it with a connection, and executes it. Next, the

rdoQuery object is associated with a different connection and executed again. The query object becomes more of an

encapsulation of any kind of query, and thus can be executed against any kind of connection, provided the SQL statement
would be appropriate for the connection.

Dim MyQuery As rdoQuery '
MyQuery.SQL = "Update customers " _

& " Set LastTouched = GetDateQ"
MyQuery.Prepared = False 'don't prepare it,

'jJust SQLExecDirect

‘assume that cnSomeConnection

'is

an rdoConnection or stand-alone object

MyQuery.ActiveConnection = cnSomeConnection
MyQuery.Execute

MyQuery.ActiveConnection = cnOtherConnection

'the cnOtherConnection is over a WAN, so | can increase
'my query timeout to compensate

MYQuery.QueryTimeout = 120

MyQuery.Execute

Choosing the right SQL Syntax

When coding the SQL property of an rdoQuery object, you can choose between one of three syntax styles to code your

parameter query:

sSQL = "Select Name, Age From Animals

Concatenated Strings: Your code builds up the SQL statement and its parameters using the Visual Basic concatenation
(&) operator. This statement can be passed to the SQL argument of the OpenResultset method or the rdoQuery
object's SQL property. In this case, a parameter query might look like this:

& " Where Weight > " & WeightWanted.Text _
& " and Type = ' & TypeWanted.Text & "'"

Native SQL syntax: The SQL syntax used by the remote server. In this case you can execute your own query or stored
procedure, and pass in parameters by concatenation, or using placeholders, or both. The parameters marked with
placeholders are managed by RDO as rdoParameter objects. A parameter query might look like this:

sSQL = "Select Au_LName from Authors" _
& " Where Au_Fname = ?"

sSQL = "Execute MyStoredProc ‘Argl’', 450, '
& Textl

sSQL = "Execute MyStoredProc ?, ?, ?"

ODBC CALL syntax: Designed to call stored procedures that return a return status or output parameters. In this case, a
placeholder can be defined for each input, output, or input/output parameter which is automatically mapped to

https://msdn.microsoftcom/en-us/Nbrary/aa262767(v=vs.60).aspx 2/4

https://msdn.microsoftcom/en-us/Nbrary/aa262767(v=vs.60).aspx

27. 12. 2017 rdoQuery Object (RemoteData Control)

rdoParameter objects. You can also mix in concatenated operators as needed. In this case, a parameter query might

look like this:
sSQL = "{call ParameterTest (?,?,?) }"
Or

sSQL = "{? =call ParameterTest (?,?,?) }"

Or

sSQL = "{? = call CountAnimals (?, ?, 14, 'Pig")}

The rdoQuery object is managed by setting the following properties and methods.

Use the SQL property to specify a parameterized SQL statement to execute. The name argument of the CreateQuery
method can also be used to provide the SQL query string.

e Set query parameters by using the rdoQuery object's rdoParameters collection.

e Use the Prepared property to indicate if the rdoQuery object should be prepared by the ODBC SQLPrepare function.
If False, the query is executed using the SQLExecDirect function.

e Use the Type property to determine whether the query selects rows from an existing table (select query), performs an
action (an action query), contains both action and select operations, or represents a stored procedure.

e Use the RowsetSize property setting to determine how many rows are buffered internally when building a cursor and
locked when using pessimistic locking.

e Use the KeysetSize property to indicate the size of the keyset buffer when creating cursors.

e Use the MaxRows property to indicate the maximum number of rows to be returned by a query.

e Use the RowsAffected property to indicate how many rows are affected by an action query.

e Use the QueryTimeout property to indicate how long the driver manager waits before pausing a query and firing the
QueryTimeout event.

e Use the BindThreshold property to indicate the largest column to be automatically bound.

e Use the ErrorThreshold property to indicate the error level that constitutes a trappable error.

e Use the Updatable property to see if the result set generated by an rdoQuery can be updated.

e Use the OpenResultset method to create an rdoResultset based on the OpenResultset arguments and properties of
the rdoQuery.

e Use the Execute method to run an action query using SQL and other rdoQuery properties, including any values
specified in the rdoParameters collection.

e Use the LogMessages property to activate ODBC tracing.

rdoQuery Object Events

The following events are fired as the rdoQuery object is manipulated. These can be used to micro-manage queries
associated with the rdoQuery or coordinate other processes in your application.

Event Name Description

https://msdn.microsoft.com/en-us/Nbrary/aa262767(v=vs.60).aspx 3/4

https://msdn.microsoft.com/en-us/library/aa240569(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241004(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241027(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241009(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443277(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443300(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443500(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443289(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443523(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262767(v=vs.60).aspx

27. 12. 2017 rdoQuery Object (RemoteData Control)

QueryComplete Fired when a query has completed.

QueryTimeout Fired when the QueryTimeout period has elapsed and the query has not begun to return rows.

WillExecute Fired before the query is executed permitting last-minute changes to the SQL, orto prevent the query
from executing.

Closing the rdoQuery Object

Use the Close method to close an rdoQuery object, set its ActiveConnection property to Nothing, and remove it from the
rdoQueries collection. However, you can still re-associate the rdoQuery object with another rdoConnection object by
setting its ActiveConnection property to another rdoConnection object. Using the Execute method or OpenResultset
method against an rdoQuery object that has its ActiveConnection property setto Nothing or an invalid rdoConnection

causes atrappable error.

Addressing rdoQuery Objects

rdoQuery objects are the preferred way to submit parameter queries to the external server. For example, you can create a

parameterized Transact SQL query (as used on Microsoft SQL Server) and store it in an rdoQuery object.

You referto an rdoQuery object by its Name property setting using the following syntax. Since the rdoQuery object's
default collection is the rdoParameters collection, all unqualified references to the rdoQuery object refer to the
rdoParameters collection. In these examples, assume we have created an rdoQuery object named rdoQo using the syntax

Dim rdoQo as rdoQueries. The firsttwo examples referto the rdoQuery object named "MyQuery".

rdoQo("MyQuery")

Or

rdoQo!MyQuery

You can also referto rdoQuery objects (and the rdoPreparedStatements collection) by their position in the rdoQueries

collection using this syntax (where n is the nth member of the zero-based rdoQueries collection):

rdoQo(n)

© 2017 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262767(v=vs.60).aspx 4/4

https://msdn.microsoft.com/en-us/Nbrary/aa262767(v=vs.60).aspx

27. 12. 2017 rdoQuery Object, rdoQueries Collection Example (RemoteData Control)

Visual Basic: RDO Data Control

rdoQuery Object, rdoQueries Collection

Example

This example leverages RDO's ability to set the data type of individual arguments of a query. In this case, a CHARINDEX
function argument is passed as a parameter. Since the ODBC driver does not recognize this data type correctly, we simply
change it to CHAR before assigning a value to the parameter. The query itself uses TSQL syntax it does not need to use the
ODBC CALL syntax as it does not execute a parameter-based stored procedure. This example also creates a DSN-less
connection to a Microsoft SQL Server and uses the sample Pubs database.

Private Sub Queryl_Click()
Dim rs As rdoResultset

Dim cn As New rdoConnection
Dim gd As New rdoQuery

Dim cl| As rdoColumn

Const None As String = ""

cn.Connect = "uid=;pwd=;server=SEQUEL;" _
& "driver={SQL Server},database=pubs;"
& "DSN=":"

cn.CursorDriver = rdUseOdbc
cn.EstablishConnection rdDriverNoPrompt

Set gqd.ActiveConnection = cn
gqd.SQL = "Select * From Titles"
& " Where Charindex(?, Title) > 0"

qd(0).Type = rdTypeCHAR

qd(0) = InputBox("Enter search string", , "C")

Set rs = gd.OpenResultset(rdOpenForwardOnly,

For Each cl In rs.rdoColumns
Debug.Print cl.Name,

Next

Debug.Print

Do Until rs.EOF

For Each cl In rs.rdoColumns
Debug.Print cl.Value,

Next
rs.MoveNext

Debug.Print

Loop

End Sub

© 2017 Microsoft

https://msdn.microsoft.com/en-us/library/aa262768(v=vs.60).aspx

rdConcurReadOnly)

171

https://msdn.microsoft.com/en-us/library/aa262768(v=vs.60).aspx

27. 12. 2017 rdoResultset Object (RemoteData Control)

This documentation is archived and is not being maintained.

Visual Basic: RDO Data Control

Visual Studio 6.0

rdoResultset Object

See Also Example Properties Methods Events

An rdoResultset object represents the rows that result from running a query

Remarks

When you use remote data objects, you interact with data almost entirely using rdoResultset objects. rdoResultset objects
are created using the RemoteData control, or the OpenResultset method of the rdoQuery, rdoTable, or rdoConnection
object.

When you execute a query that contains one or more SQL SELECT statements, the data source returns zero or more rows in
an rdoResultset object. All rdoResultset objects are constructed using rows and columns.

A single rdoResultset can contain zero or any number of result sets so-called "multiple" result sets. Once you have
completed processing the first result set in an rdoResultset object, use the MoreResults method to discard the current
rdoResultset rows and activate the next rdoResultset. You can process individual rows of the new result setjust as you
processed the first rdoResultset. You can repeat this until the MoreResults method returns False.

A new rdoResultset is automatically added to the rdoResultsets collection when you open the object, and it's automatically
removed when you close it.

Note RDO 1.0 collections behave differently than Data Access Object (DAQO) collections. When you Set a variable containing
a reference to a RDO object like rdoResultset, the existing rdoResultset is not closed and removed from the rdoResultsets
collection. The existing object remains open and a member of its respective collection.

In contrast, RDO 2.0 collections do not behave in this manner. When you use the Set statement to assign a variable
containing a reference to an RDO object, the existing object is closed and removed from the associated collection. This
change is designed to make RDO more compatible with DAO.

Processing Multiple Result Sets

When you execute a query that contains more than one SELECT statement, you must use the MoreResults method to
discard the current rdoResultset rows and activate each subsequent rdoResultset. Each of the rdoResultset rows must be
processed or discarded before you can process subsequent result sets. To process result set rows, use the Move methods to
position to individual rows, or the MovelLast method to position to the last row of the rdoResultset. You can use the Cancel
or Close methods against rdoResultset objects that have not been fully processed.

Choosing a Cursor Type

https://msdn.microsoft.com/en-us/Nbrary/aa262769(v=vs.60).aspx 1/4

https://msdn.microsoft.com/en-us/library/aa240095(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240097(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228768(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228767(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240096(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241004(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240771(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240989(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443302(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443324(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443289(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443237(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262769(v=vs.60).aspx

27. 12. 2017 rdoResultset Object (RemoteData Control)

You can choose the type of rdoResultset object you want to create using the type argument of the OpenResultset method
the default Type is rdOpenForwardOnly for RDO and rdOpenKeyset for the RemoteData control. If you specify
rdUseNone as the CursorDriver property, a forward-only, read-only result set is created. Each type of rdoResultset can
contain columns from one or more tables in a database.

There are four types of rdoResultset objects based on the type of cursor that is created to access the data:

e Forward-only type rdoResultset individual rows in the result set can be accessed and can be updatable (when using
server-side cursors), but the current row pointer can only be moved toward the end of the rdoResultset using the
MoveNext method no other method is supported.

e Static-type rdoResultset a static copy of a set of rows that you can use to find data or generate reports. Static cursors
might be updatable when using either the ODBC cursor library or server-side cursors, depending on which drivers are
supported and whether the source data can be updated.

e Keyset-type rdoResultset the result of a query that can have updatable rows. Movement within the keyset is
unrestricted. A keyset-type rdoResultset is a dynamic set of rows that you can use to add, change, or delete rows
from an underlying database table or tables. Membership of a keyset rdoResultset is fixed.

e« Dynamic-type rdoResultset the result of a query that can have updatable rows. A dynamic-type rdoResultset is a
dynamic set of rows that you can use to add, change, or delete rows from an underlying database table or tables.
Membership of a dynamic-type rdoResultset is not fixed.

Dissociate rdoResultset objects

When using the client batch cursor library, RDO permits you to disconnect an rdoResultset object from the rdoConnection
object used to populate its rows by setting the ActiveConnection property to Nothing. While dissociated, the rdoResultset
object becomes a temporary static snapshot of a local cursor. It can be updated, new rows can be added and rows can be
removed from this rdoResultset. You can re-associate the rdoResultset by setting the ActiveConnection property to
another (or the same) rdoConnection object. Once reconnected, you can use the BatchUpdate method to synchronize the
rdoResultset with a remote database.

To perform this type of dissociated update operation, you should open the rdoResultset using an rdOpenStatic cursor, and
use the rdConcurBatch as the concurrency option.

Managing rdoResultset Object Properties and Methods

You can use the methods and properties of the rdoResultset object to manipulate data and navigate the rows of a result set.
For example, you can:

e Use the Type property to indicate the type of rdoResultset created, and the Updatable property indicates whether or
not you can change the object's rows.

e Use the BOF and EOF properties to see if the current row pointer is positioned beyond either end of the rdoResultset
or it contains no rows.

e Use the MoveNext method to reposition the current row in forward-only type rdoResultset objects.

e Use the Bookmarkable, Transactions, and Restartable properties to determine if the rdoResultset supports
bookmarks or transactions, or can be restarted.

e Use the LockEdits property to determine the type of locking used to update the rdoResultset.
e Use the RowCount property to determine how many rows in the rdoResultset are available. If the RowCount
property returns -1, RDO cannot determine how many rows have been processed. Only when you move to EOF does

the RowCount property reflect the number of rows returned by the query. Not all cursor types support this
functionality. The RowCount property returns -1 if it is not available.

https://msdn.microsoftcom/en-us/Nbrary/aa262769(v=vs.60).aspx 2/4

https://msdn.microsoft.com/en-us/library/aa241027(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443303(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443300(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241011(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443523(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443500(v=vs.60).aspx
https://msdn.microsoftcom/en-us/Nbrary/aa262769(v=vs.60).aspx

27. 12. 2017 rdoResultset Object (RemoteData Control)

e Use the AddNew, Edit, Update, and Delete methods to add new rows or otherwise modify updatable rdoResultset
objects. Use the CancelUpdate method to cancel pending edits.

e Use the Requery method to restart the query used to create an rdoResultset object. This method can be used to re-
execute a parameterized query.

e Use the MoreResults method to complete processing of the current rdoResultset and begin processing the next
result set generated from a query. Use the Cancel method to terminate processing of all pending queries when the
query contains more than one SQL operation. When you use the Close method against an rdoResultset, all pending
queries are flushed and the rdoResultset is automatically dropped from the rdoResultsets collection.

e Use the Close method to terminate and deallocate the rdoResultset object and remove it from the rdoResultsets
collection.

rdoResultset Events

The following events are fired as the rdoResultset object is manipulated. These can be used to micro-manage result sets or
to synchronize other processes with the operations performed on the rdoResultset object.

Event Name Description

Associate Fired after a new connection is associated with the object.
ResultsChange Fired after current rowset is changed (multiple result sets).

Dissociate Fired after the connection is set to nothing.

QueryComplete Fired after a query has completed.

RowStatusChange Fired after the state of the current row has changed (edit, delete, insert).

RowCurrencyChange Fired after the current row pointer is repositioned.

WillAssociate Fired before a new connection is associated with the object.
WillDissociate Fired before the connection is set to nothing.
WillUpdateRows Fired before an update to the server occurs.

Executing Multiple Operations on a Connection

If there is an unpopulated rdoResultset pending on a data source that can only support a single operation on an
rdoConnection object, you cannot create additional rdoQuery or rdoResultset objects, or use the Refresh method on the
rdoTable object until the rdoResultset is flushed, closed, or fully populated. For example, when using SQL Server 4.2 as a
data source, you cannot create an additional rdoResultset object until you move to the last row of the last result set of the
current rdoResultset object. To populate the result set, use the MoreResults method to move through all pending result
sets, or use the Cancel or Close method on the rdoResultset to flush all pending result sets.

Handing Beginning and End of File Conditions

When you create an rdoResultset, the current row is positioned to the first row if there are any rows. If there are no rows,
the RowCount property setting is 0, and the BOF and EOF property settings are both True.

Note An rdoResultset may not be updatable even if you request an updatable rdoResultset. If the underlying database,
table, or column isn't updatable, or if your user does not have update permission, all or portions of your rdoResultset may

https://msdn.microsoft.com/en-us/library/aa262769(v=vs.60).aspx 3/4

https://msdn.microsoft.com/en-us/library/aa443298(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240627(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262769(v=vs.60).aspx

27. 12. 2017 rdoResultset Object (RemoteData Control)

be read-only. Examine the rdoConnection, rdoResultset, and rdoColumn objects' Updatable property to determine if your
code can change the rows.

Closing rdoResultset objects

Use the Close method to remove an rdoResultset object from the rdoResultsets collection, disassociate it from its
connection, and free all associated resources. No events are fired when you use the Close method.

Setting the ActiveConnection property to Nothing removes the rdoResultset object from the rdoResultsets collection and
fires events, but does not deallocate the object resources. Setting the rdoResultset object's ActiveConnection property to a
valid rdoConnection object causes the rdoResultset object to be re-appended to the rdoResultsets collection of the
rdoConnection object.

Addressing rdoResultset Objects

The default collection of an rdoResultset is the rdoColumns collection, and the default property of an rdoColumn object is
the Value property. You can simplify your code by taking advantage of these defaults. For example, the following lines of
code all set the value of the PubID column in the current row of an rdoResultset:

MyRs.rdoColumns("PubID").Value = 99
MyRs("PubID") = 99

MyRs!PubID = 99

' This is the first column

' returned by the SELECT statement...
MyRs(0) = 99

The Name property of an rdoResultset object contains the first 255 characters of the query used to create the resultset, so it
is often unsuitable as an index into the rdoResultsets collection especially since several queries might be created with the
same SQL query.

You can refer to rdoResultset objects by their position in the rdoResultsets collection using this syntax (where n is the nth
member of the zero-based rdoResultsets collection):

rdoResultsets(n)

© 2017 Microsoft

https://msdn.microsoft.com/en-us/library/aa262769(v=vs.60).aspx 4/4

https://msdn.microsoft.com/en-us/library/aa262769(v=vs.60).aspx

28. 12. 2017

Do Until rs.EOF
For Each cl In rs.rdoColumns

Debug.Print cl.Value,

Next
rs.MoveNext

Debug.Print

Loop

Debug.Print "Row count="; rs.RowCount

Loop Until rs.MoreResults = False
End Sub

© 2017 Microsoft

https://msdn.microsoftcom/en-us/library/aa262770(v=vs.60).aspx

rdoResultset Object, rdoResultsets Collection Example (RemoteData Control)

212

https://msdn.microsoftcom/en-us/library/aa262770(v=vs.60).aspx

27. 12. 2017 rdoResultsets Collection (RemoteData Control)

This documentation is archived and is not being maintained.

Visual Basic: RDO Data Control

Visual Studio 6.0

rdoResultsets Collection

See Also Example Properties Methods Events

The rdoResultsets collection contains all open rdoResultset objects in an rdoConnection.

Remarks

A new rdoResultset is automatically added to the rdoResultsets collection when you open the object, and it's automatically
removed when you close it. Several rdoResultset objects might be active at any one time.

Use the Close method to remove an rdoResultset object from the rdoResultsets collection, disassociate it from its
connection, and free all associated resources. No events are fired when you use the Close method.

Setting the ActiveConnection property to Nothing removes the rdoResultset object from the rdoResultsets collection and
fires events, but does not deallocate the object resources. Setting the rdoResultset object's ActiveConnection property to a
valid rdoConnection object causes the rdoResultset object to be re-appended to the rdoResultsets collection.

Note RDO 1.0 collections behave differently than Data Access Object (DAQO) collections. When you Set a variable containing
a reference to a RDO object like rdoResultset, the existing rdoResultset is not closed and removed from the rdoResultsets
collection. The existing object remains open and a member of its respective collection.

In contrast, RDO 2.0 collections do not behave in this manner. When you use the Set statement to assign a variable
containing a reference to an RDO object, the existing object is closed and removed from the associated collection. This
change is designed to make RDO more compatible with DAO.

Managing the rdoResultsets Collection

When you use the OpenResultset method against an rdoConnection or rdoQuery, and assign the result to an existing
rdoResultset object, the existing object is maintained and a new rdoResultset object is appended to the rdoResultsets
collection. When performing similar operations using the Microsoft Jet database engine and Data Access Objects (DAO),
existing recordset objects are automatically closed when the variable is assigned, and no two Recordsets collection members
can have the same name. For example, using RDO:

Dim rs as rdoResultset

Dim cn as rdoConnection

Set c¢n OpenConnection....

Set rs = cn.OpenResultset("Select * from Authors",
rdOpenStatic)

https://msdn.microsoftcom/en-us/Nbrary/aa262771(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa240094(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa262770(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228769(v=vs.60).aspx
https://msdn.microsoftcom/en-us/Nbrary/aa262771(v=vs.60).aspx

28. 12. 2017 rdoResultset Object, rdoResultsets Collection Example (RemoteData Control)

Visual Basic: RDO Data Control

rdoResultset Object, rdoResultsets Collection

Example

The following example lllustrates execution of a multiple result set query. While this query uses three SELECT statements,
only two return rows to your application. The subquery used instead of ajoin does not pass rows outside the scope of the
query itself. This is also an example of a simple parameter query that concatenates the arguments instead of using an
rdoQuery to manage the query. The OpenResultset also runs asynchronously the code checks for completion of the

operation by polling the StillExecuting property.

Private Sub ShowResultset_Click()
Dim rs As rdoResultset

Dim cn As New rdoConnection

Dim cl| As rdoColumn

Dim SQL As String

Const None As String = ""

cn.Connect = "uid=;pwd=;server=SEQUEL;" _
& "driver={SQL Server},database=pubs;
& "DSN=":"

cn.CursorDriver = rdUseOdbc
cn.EstablishConnection rdDriverNoPrompt

SQL = "Select Au_Lname, Au_Fname" _
& " From Authors A" _
& " Where Au_ID in " _
& " (Select Au_ID" _
& " from TitleAuthor TA, Titles T"
& " Where TA.Au_ID = A Au_ID" _
& " And TA.Title_ID =T.Title_ID "
& " And T.Title Like '
& InputBox("Enter search string", , "C") & "%")
& "Select * From Titles Where price > 10"

Set rs = cn.OpenResultset(SQL, rdOpenKeyset,
rdConcurReadOnly, rdAsyncEnable + rdExecDirect)

Debug.Print "Executing ";

While rs.StillExecuting

Debug.Print ".";
DoEvents
Wend
Do
Debug.Print String(50, "-") _
& "Processing Result Set " & String(50, "-")

For Each cl In rs.rdoColumns
Debug.Print cl.Name,

Next

Debug.Print

https://msdn.microsoftcom/en-us/library/aa262770(v=vs.60).aspx

172

https://msdn.microsoftcom/en-us/library/aa262770(v=vs.60).aspx

27. 12. 2017 rdoResultsets Collection (RemoteData Control)

Set rs = cn.OpenResultset("Select * from Titles",
rdOpenDynamic)

This code opens two separate rdoResultset objects; both are stored in the rdoResultsets collection. After this code runs, the
second query, which is stored in rdoResultsets(l), is assigned to the rdoResultset variable rs. The first query is available and
its cursor is still available by referencing rdoResultsets(O). Because of this implementation, more than one member of the
rdoResultsets collection can have the same name.

This behavior permits you to maintain existing rdoResultset objects, which are maintained in the rdoResultsets collection,
or close them as needed. In other words, you must explicitly close any rdoResultset objects that are no longer needed.
Simply assigning another rdoResultset to a rdoResultset-type variable has no affect on the existing rdoResultset formerly
referenced by the variable. Note that the procedures and other temporary objects created to manage the rdoResultset are
maintained on the remote server as long as the rdoResultset remains open.

If you write an application that does not close each rdoResultset before opening additional rdoResultset objects, the
number of procedures maintained in TempDB or elsewhere on the server increases each time another rdoResultset object is
opened. In addition those resultsets might require significant client or server resources to store keysets or row values. Over
time, this behavior can overflow the capacity of the server or workstation resources.

© 2017 Microsoft

https://msdn.microsoftcom/en-us/Nbrary/aa262771(v=vs.60).aspx 2/2

https://msdn.microsoftcom/en-us/Nbrary/aa262771(v=vs.60).aspx

27. 12. 2017 rdoTable Object (RemoteData Control)

This documentation is archived and is not being maintained.

Visual Basic: RDO Data Control

Visual Studio 6.0

rdoTable Object

See Also Example Properties Methods Events

An rdoTable object represents the stored definition of a base table or an SQL view.

Remarks

Note You are discouraged from using the rdoTable object and rdoTables collection to manage or inspect the structure of
your database tables. This object is maintained for backward compatibility and might not be supported in future versions of
Visual Basic or RDO.

You can map a table definition using an rdoTable object and determine the characteristics of an rdoTable object by using
its methods and properties. For example, you can:

e Examine the column properties of any table in an ODBC database. (Note that all rdoTable object properties are read-
only.)

e Use the OpenResultset method to create an rdoResultset object based on all of the rows of the base table.
e Use the Name property to determine the name of the table or view.

e Use the RowCount property to determine the number of rows in the table or view. Referencing the RowCount
property causes the query to be completed just as if you had used the MovelLast method.

e Use the Type property to determine the type of table. The ODBC data source driver determines the supported table
types.

Use the Updatable property to determine if the table supports changes to its data.

You cannot reference the rdoTable objects until you have populated the rdoTables collection because it is not automatically
populated when you connect to a data source. To populate the rdoTables collection, use the Refresh method or reference
individual members of the collection by their ordinal number.

When you use the OpenResultset method against an rdoTable object, RDO executes a "SELECT * FROM table" query that
returns all rows of the table using the cursor type specified. By default, a forward-only cursor is created.

You cannot define new tables or change the structure of existing tables using RDO or the RemoteData control. To change
the structure of a database or perform other administrative functions, use SQL queries or the administrative tools that are
provided with the database.

https://msdn.microsoft.com/en-us/Nbrary/aa262772(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa240100(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240101(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228770(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa229773(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443282(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443290(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443523(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241004(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443324(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241001(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240771(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443300(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443302(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241026(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262772(v=vs.60).aspx

27. 12. 2017 rdoTable Object (RemoteData Control)

The default collection of an rdoTable object is the rdoColumns collection. The default property of an rdoTable is the Name
property. You can simplify your code by using these defaults. For example, the following statements are identical in that they
both print the number corresponding to the column data type of a column in an rdoTable using a RemoteData control:

Print RemoteDatal.Connection.rdoTables _
("Publishers").rdoColumns("PubID").Type

Print RemoteDatal.Connection("Publishers").
("PublID").Type

The Name property of an rdoTable object isn't the same as the name of an object variable to which it's assigned it is derived
from the name of the base table in the database.

You referto an rdoTable object by its Name property setting using this syntax:

rdoTables("Authors") 'Refers to the Authors table
Or
rdoTables!Authors 'Refers to the Authors table

You can also referto rdoTable objects by their position in the rdoTables collection using this syntax (where n is the nth
member of the zero-based rdoTables collection):

rdoTables(n)

© 2017 Microsoft

https://msdn.microsoftcom/en-us/Nbrary/aa262772(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa443528(v=vs.60).aspx
https://msdn.microsoftcom/en-us/Nbrary/aa262772(v=vs.60).aspx

27. 12. 2017 rdoTables Collection (RemoteData Control)

This documentation is archived and is not being maintained.

Visual Basic: RDO Data Control

Visual Studio 6.0

rdoTables Collection

See Also Example Properties Methods Events

The rdoTables collection contains all stored rdoTable objects in a database.

Remarks

Note You are discouraged from using the rdoTable object and rdoTables collection to manage or inspect the structure of
your database tables. This object is maintained for backward compatibility and might not be supported in future versions of

Visual Basic.

For performance reasons, you cannot reference an rdoTable object until you have first populated the rdoTables collection
because it is not automatically populated when you connect to a data source. To populate the rdoTables collection, use the
Refresh method or reference individual members of the collection by their ordinal number. Depending on the number of
tables in your database, this can take quite some time.

© 2017 Microsoft

https://msdn.microsoftcom/en-us/Nbrary/aa262773(v=vs.60).aspx

171

https://msdn.microsoft.com/en-us/library/aa240098(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240099(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa228771(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa229899(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443303(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443324(v=vs.60).aspx
https://msdn.microsoftcom/en-us/Nbrary/aa262773(v=vs.60).aspx

27. 12. 2017 Rect Object

This documentation is archived and is not being maintained.

Visual Studio 6.0

Visual Basic: MSChart Control

Rect Object

See Also Example Properties Methods Events
Defines a coordinate location.
Syntax

Rect

© 2017 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa240516(v=vs.60).aspx 71

https://msdn.microsoft.com/en-us/library/aa240484(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240517(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa240516(v=vs.60).aspx

27. 12. 2017 LocationRect Property, Rect Object Example

Visual Basic: MSChart Control

LocationRect Property, Rect Object Example

The example increases the size of the chart plot using the LocationRect property and the x and y properties of the Rect
object.

Private Sub Commandl_Click()
' Increase the size of the chart plot.
MSChartl.Plot. AutoLayout = False
With MSChartl.Plot.LocationRect

Minx = Minx * 1.2

Miny = Miny * 1.2

Max.x = Maxx * 1.2

.Maxy = .Maxy * 1.2
End With

End Sub

© 2017 Microsoft

https://msdn.microsoft.com/en-us/library/aa240517(v=vs.60).aspx

171

https://msdn.microsoft.com/en-us/library/aa240517(v=vs.60).aspx

27. 12. 2017 Reference Object (VBA Add-In Object Model) (Visual Basic Add-In Model)

This documentation is archived and is not being maintained.

Visual Basic Extensibility Reference

Visual Studio 6.0

Reference Object

See Also Example Properties Methods Events Specifics

Represents a reference to a type library or a project.
Remarks
Use the Reference object to verify whether a reference is still valid.

The IsBroken property returns True if the reference no longer points to a valid reference. The Builtin property returns True
if the reference is a default reference that can't be moved or removed. Use the Name property to determine if the reference
you want to add or remove is the correct one.

© 2017 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa443979(v=vs.60).aspx

https://msdn.microsoft.com/en-us/library/aa443692(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443693(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443980(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa443979(v=vs.60).aspx

27. 12. 2017 References Collection (VBA Add-In Object Model) (Visual Basic Add-In Model)

This documentation is archived and is not being maintained.

Visual Basic Extensibility Reference

Visual Studio 6.0

References Collection

See Also Example Properties Methods Events Specifics

Represents the set of references in the project.
Remarks

Use the References collection to add or remove references. The References collection is the same as the set of references
selected in the References dialog box.

© 2017 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa443980(v=vs.60).aspx

171

https://msdn.microsoft.com/en-us/library/aa443694(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443703(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443702(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443695(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa443980(v=vs.60).aspx

27. 12. 2017 ReferencesEvents Object (VBA Add-In Object Model) (Visual Basic Add-In Model)

This documentation is archived and is not being maintained.

Visual Basic Extensibility Reference

Visual Studio 6.0

ReferencesEvents Object

See Also Example Properties Methods Events Specifics
Returned by the ReferencesEvents property.

Remarks

The ReferencesEvents object is the source of events that occur when a reference is added to or removed from a project. The

ItemAdded event is triggered after a reference is added to a project. The IltemRemoved event is triggered after a reference is

removed from a project.

© 2017 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa443981(v=vs.60).aspx

171

https://msdn.microsoft.com/en-us/library/aa443698(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443700(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443699(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa443981(v=vs.60).aspx

27. 12. 2017 RemoteData Control (RemoteData Control)

This documentation is archived and is not being maintained.

Visual Basic: RDO Data Control

Visual Studio 6.0

RemoteData Control

See Also Example Properties Methods Events

Provides access to data stored in a remote ODBC data source through bound controls. The RemoteData control enables you
to move from row to row in a result set and to display and manipulate data from the rows in bound controls.

Syntax
RemoteData
Remarks
The RemoteData control provides an interface between Remote Data Objects (RDO) and data-aware bound controls. With
the RemoteData control, you can:

e Establish a connection to a data source based on its properties.

» Create an rdoResultset.

e Pass the current row's data to corresponding bound controls.

e Permit the user to position the current row pointer.

e Pass any changes made to the bound controls back to the data source.
Overview

Without a RemoteData control, a Data control or its equivalent, data-aware (bound) controls on a form can't automatically
access data. The RemoteData and Data controls are examples of DataSource Controls. You can perform most remote data
access operations using the DataSource controls without writing any code at all. Data-aware controls bound to a DataSource
control automatically display data from one or more columns for the current row or, in some cases, for a set of rows on
either side of the current row. DataSource controls perform all operations on the current row.

The RemoteData DataSource Control

If the RemoteData control is instructed to move to a different row, all bound controls automatically pass any changes to the
RemoteData control to be saved to the ODBC data source. The RemoteData control then moves to the requested row and
passes back data from the current row to the bound controls where it's displayed.

The RemoteData control automatically handles a number of contingencies including empty result sets, adding new rows,
editing and updating existing rows, converting and displaying complex data types, and handling some types of errors.
However, in more sophisticated applications, you must trap some error conditions that the RemoteData control can't
handle. For example, if the remote server has a problem accessing the data source, the user doesn't have permission, or the
query can't be executed as coded, a trappable error results. If the error occurs before your application procedures start, or as
a result of some internal errors, the Error event is triggered.

Operation

https://msdn.microsoft.com/en-us/Nbrary/aa262774(v=vs.60).aspx 1/4

https://msdn.microsoft.com/en-us/library/aa240102(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240105(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240104(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240103(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443525(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241004(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443237(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443285(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241001(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa443298(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa241010(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa240627(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa262774(v=vs.60).aspx

27. 12. 2017 RemoteData Control (RemoteData Control)

Use the RemoteData control properties to describe the data source, establish a connection, and specify the type of cursor to
create. If you alter these properties once the result set is created, use the Refresh method to rebuild the underlying
rdoResultset based on the new property settings.

The RemoteData control behaves like the Jet-driven Data control in most respects. The following guidelines illustrate a few
differences that apply when setting the SQL property.

You can treat the RemoteData control's SQL property like the Data control's RecordSource property except that it cannot
accept the name of a table by itself, unless you populate the rdoTables collection first. Generally, the SQL property specifies
an SQL query. For example, instead ofjust "Authors", you would code "SELECT * FROM AUTHORS" which provides the same
functionality. However, specifying a table in this manner is not a good programming practice as it tends to return too many
rows and can easily exhaust workstation resources or lock large segments of the database.

The result set created by the RemoteData control might not be in the same order as the Recordset created by the Data
control. For example, if the Data control's RecordSource property is set to "Authors" and the RemoteData control's SQL
property is set to "SELECT * FROM AUTHORS", the first record returned by Jet to the Data control is based on the first
available index on the Authors table. The RemoteData control, however, returns the first row returned by the remote
database engine based on the physical sequence of the rows in the database, regardless of any indexes. In some cases, the
order of the records could be identical, but not always.

This difference in behavior can affect how bound controls handle the resulting rows especially multiple-row bound controls
like the DataGrid control. You can manipulate the RemoteData control with the mouse to move the current row pointer
from row to row, or to the beginning or end of the rdoResultset by clicking the control. As you manipulate the RemoteData
control buttons, the current row pointer is repositioned in the rdoResultset. You cannot move off either end of the
rdoResultset using the mouse. You also can't set focus to the RemoteData control.

Other Features

You can use the objects created by the RemoteData control to create additional rdoConnection, rdoResultset, or
rdoQueryobjects.

You can set the RemoteData control Resultset property to an rdoResultset created independently of the control. If this is
done, the RemoteData control properties are reset based on the new rdoResultset and rdoConnection.

You can set the Options property to enable asynchronous creation of the rdoResultset (rdAsyncEnable) or to execute the
query without creating a temporary stored procedure (rdExecDirect).

The Validate event is triggered before each reposition of the current row pointer. You can choose to accept the changes
made to bound controls or cancel the operation using the Validate event's action argument.

The RemoteData control can also manage what happens when you encounter an rdoResultset with no rows. By changing
the EOFAction property, you can program the RemoteData control to enter AddNew mode automatically.

Note If you have an Image control bound to an image-containing field in a RemoteData control, and the RemoteData
control uses batch cursors (that is, CursorDriver =rdUseClientBatch), the Image control doesn't display the image.

Programmatic Operation

To create an rdoResultset programmatically with the RemoteData control:

e Set the RemoteData control properties to describe the desired characteristics of the rdoResultset.

e Use the Refresh method to begin the automated process or to create the new rdoResultset. Any existing
rdoResultset is discarded.

All of the RemoteData control properties and the new rdoResultset object may be manipulated independently of the
RemoteData control-with or without bound controls. The rdoConnection and rdoResultset objects each have properties
and methods of their own that can be used with procedures that you write.

https://msdn.microsoft.com/en-us/Nbrary/aa262774(v=vs.60).aspx 2/4

https://msdn.microsoft.com/en-us/Nbrary/aa262774(v=vs.60).aspx

27. 12. 2017 RemoteData Control (RemoteData Control)

For example, the MoveNext method of an rdoResultset object moves the current row to the next row in the rdoResultset.
To invoke this method with an rdoResultset created by a RemoteData control, you could use this code:

RemoteDatal.Resultset.MoveN ext

Resultset Does Not Automatically Update Bound Controls

Assigning a resultset to a RemoteData Control (RDC) doesn't update bound controls. When you bind a control to the
resultset of an RDC, the resultset doesn't automatically display in the control. To illustrate this:

1. Start Visual Basic and open a Standard EXE project.
2. Reference the RDC.

3. Place an RDC on the form.

4. Place a TextBox control on the form.

5. Set the following TextBox properties:
DataSource: MSRDC1

DataField: au_Iname

6. Place a CommandButton control on the form and add the following code to its Click event:

Dim cn As New rdoConnection

cn.Connect = _
"dsn=pinkpearl,database=rdobugs;uid=rdo;pwd="
cn.EstablishConnection

Set MSRDC1.Resultset = cn.OpenResultset("select * _
from authors]")

7. Run the project (F5).

8. Click the CommandButton.

Notice that the bound control does not populate with data as you would expect. You must issue the command
MSRDCL1.Refresh for the bound control to populate, which causes the server to send the entire resultset again. (Note that
this can take a long time in some situations.)

To work around this problem, set any bound control's datafield after setting the resultset in code. For example, after the line:
Set MSRDC1.Resultset = cn.OpenResultset("select *
from authors]")

you would add:

Textl.DataField = "au_lname"

which forces the binding manager to set and update the bindings, which populates the bound control with data.

Bound Image or PictureBox Control Doesn't Display Picture When RDC Uses Batch Cursors

When you are using an Image or PictureBox control bound to an image-containing field in an RDC, and the RDC uses batch
cursors (CursorDriver =rdUseClientBatch), be aware that the Image or PictureBox control doesn't display the image. To
correctly display the image, either set the RDC's Options property to 128 (rdFetchLongColumns), or use a different cursor.

Do Not Use Forward-only Resultsets

When you attempt to assign a forward-only resultset to an RDC, you get an "invalid object" error. To illustrate this situation:

https://msdn.microsoft.com/en-us/Nbrary/aa262774(v=vs.60).aspx 3/4

https://msdn.microsoft.com/en-us/Nbrary/aa262774(v=vs.60).aspx

27. 12. 2017 RemoteData Control (RemoteData Control)

1. Start Visual Basic.

2. Place a RemoteData control on Forml.

3. Add a reference to RDO through the References command on the Project menu.

4. Add the following code to the Form_Load event:

Dim x as new rdoConnection

Dim y as rdoQuery

x.Connect = "DSN=Union;UID=rdo,PWD="
x.EstablishConnection

Set y = x.CreateQuery(,,Queryl,,J "SELECT * FROM _
authors")

x.Queryl

' invalid object error occurs on next line

Set MSRDC1.Resultset = x.LastQueryResults

5. Press F5.

The reason this error occurs is that it uses a forward-only resultset which cannot be assigned to the RDC. In order to assign a
resultset to an RDC, it must be either keyset or static. For example:

Dim x As New rdoConnection

Dim y As rdoQuery

X . Connect = "DSN=Union;database=rdobugs;UID=rdo;PWD=
x.EstablishConnection

Set y = x.CreateQuery("Queryl", "SELECT * FROM _
authors")

y . CursorType = rdOpenKeyset

y.LockType = rdConcurRowVer

x.Queryl

Set MSRDC1.Resultset = x.LastQueryResults

© 2017 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa262774(v=vs.60).aspx 4/4

https://msdn.microsoft.com/en-us/Nbrary/aa262774(v=vs.60).aspx

27. 12. 2017 RepeaterBinding Object (DataRepeater Control)

This documentation is archived and is not being maintained.

Visual Basic. DataRepeater Control

Visual Studio 6.0

RepeaterBinding Object

See Also Example Properties Methods Events

The RepeaterBinding object represents a bindable property of a component.
Syntax

RepeaterBinding

Remarks

Use the RepeaterBinding object at run time to change the contents of a DataRepeater control by changing how fields are
bound.

© 2017 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa239118(v=vs.60).aspx

171

https://msdn.microsoft.com/en-us/library/aa259885(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa239124(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa259893(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa239118(v=vs.60).aspx

27. 12. 2017 RepeaterBinding Object Example (DataRepeater Control)

Visual Basic: DataRepeater Control

RepeaterBinding Object Example

The example below first prints the existing property names of the RepeaterBindings collection, then adds a DataBinding
object to the collection, and finally changes the format of a DataBinding object.

Private Sub DataRepeaterl_RepeatedControlLoaded()
Dim rb As RepeaterBinding

For Each rb In DataRepeaterl.RepeaterBindings
Debug.Print rb.PropertyName ' Print all property names.
Next

With DataRepeaterl
' Add a new RepeaterBinding object.

.RepeaterBindings.Add "cleared", "cleared"
' Change the Format to all caps.
.RepeaterBindings(2).DataFormat.Format = ">"
End With
End Sub

© 2017 Microsoft

https://msdn.microsoft.com/en-us/library/aa239124(v=vs.60).aspx

171

https://msdn.microsoft.com/en-us/library/aa239124(v=vs.60).aspx

27. 12. 2017 RichTextBox Control (RichTextBox Control)

This documentation is archived and is not being maintained.

Visual Basic: RichTextBox Control

Visual Studio 6.0

RichTextBox Control

See Also Example Properties Methods Events

The RichTextBox control allows the user to enter and edit text while also providing more advanced formatting features than
the conventional TextBox control.

Syntax
RichTextBox
Remarks

The RichTextBox control provides a number of properties you can use to apply formatting to any portion of text within the
control. To change the formatting of text, it must first be selected. Only selected text can be assigned character and
paragraph formatting. Using these properties, you can make text bold or italic, change the color, and create superscripts and
subscripts. You can also adjust paragraph formatting by setting both left and right indents, as well as hanging indents.

The RichTextBox control opens and saves files in both the RTF format and regular ASCII text format. You can use methods
of the control (LoadFile and SaveFile) to directly read and write files, or use properties of the control such as SelRTF and
TextRTF in conjunction with Visual Basic's file input/output statements.

The RichTextBox control supports object embedding by using the OLEODbjects collection. Each object inserted into the
control is represented by an OLEODbject object. This allows you to create documents with the control that contain other
documents or objects. For example, you can create a document that has an embedded Microsoft Excel spreadsheet or a
Microsoft Word document or any other OLE object registered on your system. To insert objects into the RichTextBox
control, you simply drag a file (from the Windows 95 Explorer for example), or a highlighted portion of a file used in another
application (such as Microsoft Word), and drop the contents directly onto the control.

The RichTextBox control supports both clipboard and OLE drag/drop of OLE objects. When an object is pasted in from the
clipboard, it is inserted at the current insertion point. When an object is dragged and dropped into the control, the insertion
point will track the mouse cursor until the mouse button is released, causing the object to be inserted. This behavior is the
same as Microsoft Word.

To print all or part of the text in a RichTextBox control use the SelPrint method.

Because the RichTextBox is a data-bound control, you can bind it with a Data control to a Binary or Memo field in a
Microsoft Access database or a similar large capacity field in other databases (such as a TEXT data type field in SQL Server).

The RichTextBox control supports almost all of the properties, events and methods used with the standard TextBox control,
such as MaxLength, MultiLine, ScrollBars, SelLength, SelStart, and SelText. Applications that already use TextBox
controls can easily be adapted to make use of RichTextBox controls. However, the RichTextBox control doesn't have the
same 64K character capacity limit of the conventional TextBox control.

Distribution Note To use the RichTextBox control in your application, you must add the Richtx32.ocx file to the project.
When distributing your application, install the Richtx32.ocx file in the user's Microsoft Windows SYSTEM directory. For more
information on how to add a custom control to a project, see the Programmer's Guide.

https://msdn.microsoft.com/en-us/Nbrary/aa261653(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa261594(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa261597(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa261596(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa261595(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa261653(v=vs.60).aspx

