
11. 1.2018 + Operator

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

+ Operator
See Also Example Specifics

Used to sum two numbers.

Syntax

result = expression1+expression2

The + operator syntax has these parts:

Part Description

result Required; any numeric variable.

expressionl Required; any expression.

expression2 Required; any expression.

Remarks

When you use the + operator, you may not be able to determine whether addition or string concatenation will occur. Use the
& operator for concatenation to eliminate ambiguity and provide self-documenting code.

If at least one expression is not a Variant, the following rules apply:

If Then

Both expressions are numeric data types (Byte, Boolean, Integer, Long, Single,
Double, Date, Currency, or Decimal)

Add.

Both expressions are String Concatenate.

One expression is a numeric data type and the other is any Variant except Null Add.

One expression is a String and the other is any Variant except Null Concatenate.

One expression is an Empty Variant Return the remaining expression
unchanged as result.

https://msdn.microsoft.com/en-us/Nbrary/aa242731(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa262411(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa242746(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa220031.aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/library/aa212174.aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa210841.aspx
https://msdn.microsoft.com/en-us/library/aa210393.aspx
https://msdn.microsoft.com/en-us/library/aa212271.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/library/aa211377.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa242731(v=vs.60).aspx

11. 1.2018 + Operator

One expression is a numeric data type and the other is a String A Type mismatch error occurs.

Either expression is Null result is Null.

If both expressions are Variant expressions, the following rules apply:

If Then

Both Variant expressions are numeric Add.

Both Variant expressions are strings Concatenate.

One Variant expression is numeric and the other is a string Add.

For simple arithmetic addition involving only expressions of numeric data types, the data type of result is usually the same as
that of the most precise expression. The order of precision, from least to most precise, is Byte, Integer, Long, Single,
Double, Currency, and Decimal. The following are exceptions to this order:

If Then result is

A Single and a Long are added, a Double.

The data type of result is a Long, Single, or Date variant that overflows its legal range, converted to a Double variant.

The data type of result is a Byte variant that overflows its legal range, converted to an Integer variant.

The data type of result is an Integer variant that overflows its legal range, converted to a Long variant.

A Date is added to any data type, a Date.

If one or both expressions are Null expressions, result is Null. If both expressions are Empty, result is an Integer. However, if
only one expression is Empty, the other expression is returned unchanged as result.

Note The order of precision used by addition and subtraction is not the same as the order of precision used by
multiplication.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242731(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa242731(v=vs.60).aspx

11. 1.2018 + Operator Example

Visual Basic for Applications Reference

+ Operator Example
This example uses the + operator to sum numbers. The + operator can also be used to concatenate strings. However, to
eliminate ambiguity, you should use the & operator instead. If the components of an expression created with the + operator
include both strings and numerics, the arithmetic result is assigned. If the components are exclusively strings, the strings are
concatenated.

Dim MyNumber, Var1, Var2
MyNumber = 2 + 2 ' Returns 4.
MyNumber = 4257.04 + 98112 ' Returns 102369.04.

Var1 = "34": Var2 = 6 ' Initialize mixed variables.
MyNumber = Var1 + Var2 ' Returns 40.

Var1 = "34": Var2 = "6" ' Initialize variables with strings.
MyNumber = Var1 + Var2 ' Returns "346" (string concatenation).

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242746(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa242746(v=vs.60).aspx

11. 1.2018 - Operator

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

- Operator
See Also Example Specifics

Used to find the difference between two numbers or to indicate the negative value of a numeric expression.

Syntax 1

result = number1number2

Syntax 2

number

The operator syntax has these parts:

Part Description

result Required; any numeric variable.

number Required; any numeric expression.

numberl Required; any numeric expression.

number2 Required; any numeric expression.

Remarks

In Syntax 1, the operator is the arithmetic subtraction operator used to find the difference between two numbers. In Syntax 2,
the operator is used as the unary negation operator to indicate the negative value of an expression.

The data type of result is usually the same as that of the most precise expression. The order of precision, from least to most
precise, is Byte, Integer, Long, Single, Double, Currency, and Decimal. The following are exceptions to this order:

If Then result is

Subtraction involves a Single and a Long, converted to a Double.

The data type of result is a Long, Single, or Date variant that overflows its converted to a Variant containing a
legal range, Double.

The data type of result is a Byte variant that overflows its legal range, converted to an Integer variant.

https://msdn.microsoft.com/en-us/Nbrary/aa242855(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa262426(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa242857(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa220031.aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/library/aa212174.aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa210393.aspx
https://msdn.microsoft.com/en-us/library/aa210841.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa242855(v=vs.60).aspx

11. 1.2018 - Operator

The data type of result is an Integer variant that overflows its legal range, converted to a Long variant.

Subtraction involves a Date and any other data type, a Date.

Subtraction involves two Date expressions, a Double.

One or both expressions are Null expressions, result is Null. If an expression is Empty, it is treated as 0.

Note The order of precision used by addition and subtraction is not the same as the order of precision used by
multiplication.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242855(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/library/aa211377.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa242855(v=vs.60).aspx

11. 1.2018 - Operator Example

Visual Basic for Applications Reference

- Operator Example
This example uses the - operator to calculate the difference between two numbers.

Dim MyResult
MyResult = 4 - 2 ' Returns 2.
MyResult = 459.35 - 334.90 ' Returns 124.45.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242857(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa242857(v=vs.60).aspx

11. 1.2018 * Operator

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

* Operator
See Also Example Specifics

Used to multiply two numbers.

Syntax

result = number1*number2

The * operator syntax has these parts:

Part Description

result Required; any numeric variable.

numberl Required; any numeric expression.

number2 Required; any numeric expression.

Remarks

The data type of result is usually the same as that of the most precise expression. The order of precision, from least to most
precise, is Byte, Integer, Long, Single, Currency, Double, and Decimal. The following are exceptions to this order:

If Then result is

Multiplication involves a Single and a Long, converted to a Double.

The data type of result is a Long, Single, or Date variant that overflows its
legal range,

converted to a Variant containing a
Double.

The data type of result is a Byte variant that overflows its legal range, converted to an Integer variant.

the data type of result is an Integer variant that overflows its legal range, converted to a Long variant.

If one or both expressions are Null expressions, result is Null. If an expression is Empty, it is treated as 0.

Note The order of precision used by multiplication is not the same as the order of precision used by addition and
subtraction.

https://msdn.microsoft.com/en-us/Nbrary/aa242833(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa262423(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa242838(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa220031.aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/library/aa212174.aspx
https://msdn.microsoft.com/en-us/library/aa210393.aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/library/aa211377.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa242833(v=vs.60).aspx

11. 1.2018 Operator Example

Visual Basic for Applications Reference

* Operator Example
This example uses the * operator to multiply two numbers.

Dim MyValue
MyValue = 2 * 2 ' Returns 4.
MyValue = 459.35 * 334.90 ' Returns 153836.315.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242838(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa242838(v=vs.60).aspx

11. 1.2018 / Operator

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

/ Operator
See Also Example Specifics

Used to divide two numbers and return a floating-point result.

Syntax

result = number1/number2

The / operator syntax has these parts:

Part Description

result Required; any numeric variable.

numberl Required; any numeric expression.

number2 Required; any numeric expression.

Remarks

The data type of result is usually a Double or a Double variant. The following are exceptions to this rule:

If Then result is

Both expressions are Byte, Integer, or
Single expressions,

a Single unless it overflows its legal range; in which case, an error occurs.

Both expressions are Byte, Integer, or
Single variants,

a Single variant unless it overflows its legal range; in which case, result is a
Variant containing a Double.

Division involves a Decimal and any other
data type,

a Decimal data type.

One or both expressions are Null expressions, result is Null. Any expression that is Empty is treated as 0.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242772(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa262415(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa242776(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa220031.aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/library/aa212174.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/library/aa211377.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa242772(v=vs.60).aspx

11. 1.2018 / Operator Example

Visual Basic for Applications Reference

/ Operator Example
This example uses the / operator to perform floating-point division.

Dim MyValue
MyValue = 10 / 4 ' Returns 2.5.
MyValue = 10 / 3 ' Returns 3.333333.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242776(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa242776(v=vs.60).aspx

11. 1.2018 \ Operator

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

\ Operator
See Also Example Specifics

Used to divide two numbers and return an integer result.

Syntax

result = number1\number2

The \ operator syntax has these parts:

Part Description

result Required; any numeric variable.

numberl Required; any numeric expression.

number2 Required; any numeric expression.

Remarks

Before division is performed, the numeric expressions are rounded to Byte, Integer, or Long expressions.

Usually, the data type of result is a Byte, Byte variant, Integer, Integer variant, Long, or Long variant, regardless of whether
result is a whole number. Any fractional portion is truncated. However, if any expression is Null, result is Null. Any expression
that is Empty is treated as 0.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242802(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa262419(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa242807(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/library/aa220031.aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/library/aa211377.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa242802(v=vs.60).aspx

11. 1.2018 \ Operator Example

Visual Basic for Applications Reference

\ Operator Example
This example uses the \ operator to perform integer division.

Dim MyValue
MyValue = 11 \ 4 ' Returns 2.
MyValue = 9 \ 3 ' Returns 3.
MyValue = 100 \ 3 ' Returns 33.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242807(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa242807(v=vs.60).aspx

11. 1.2018 Operator

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

AOperator
See Also Example Specifics

Used to raise a number to the power of an exponent.

Syntax

result = number* exponent

The * operator syntax has these parts:

Part Description

result Required; any numeric variable.

number Required; any numeric expression.

exponent Required; any numeric expression.

Remarks

A number can be negative only if exponent is an integer value. When more than one exponentiation is performed in a single
expression, the A operator is evaluated as it is encountered from left to right.

Usually, the data type of result is a Double or a Variant containing a Double. However, if either number or exponent is a Null
expression, result is Null.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242787(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa262417(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa242790(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa242787(v=vs.60).aspx

11. 1.2018 Operator Example

Visual Basic for Applications Reference

A Operator Example
This example uses the A operator to raise a number to the power of an exponent.

Dim MyValue
MyValue = 2 A 2 ' Returns 4.
MyValue = 3 a 3 a 3 ' Returns 19683.
MyValue = (-5) a 3 ' Returns -125.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242790(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa242790(v=vs.60).aspx

11. 1.2018 & Operator

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

& Operator
See Also Example Specifics

Used to force string concatenation of two expressions.

Syntax

result = expressionl & expression2

The & operator syntax has these parts:

Part Description

result Required; any String or Variant variable.

expressionl Required; any expression.

expression2 Required; any expression.

Remarks

If an expression is not a string, it is converted to a String variant. The data type of result is String if both expressions are
string expressions; otherwise, result is a String variant. If both expressions are Null, result is Null. However, if only one
expression is Null, that expression is treated as a zero-length string ("") when concatenated with the other expression. Any
expression that is Empty is also treated as a zero-length string.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242763(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa262414(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa242767(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa212271.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/library/aa211377.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa242763(v=vs.60).aspx

11. 1.2018 & Operator Example

Visual Basic for Applications Reference

& Operator Example
This example uses the & operator to force string concatenation.

Dim MyStr
MyStr = "Hello" & " World" ' Returns "Hello World".
MyStr = "Check " & 123 & " Check" ' Returns "Check 123 Check".

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242767(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa242767(v=vs.60).aspx

12. 1.2018 = Operator

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

= Operator
See Also Example Specifics

Description

Used to assign a value to a variable or property.

Syntax

variable = value

The = operator syntax has these parts:

Part Description

variable Any variable or any writable property.

value Any numeric or string literal, constant, or expression.

Remarks

The name on the left side of the equal sign can be a simple scalar variable or an element of an array. Properties on the left
side of the equal sign can only be those properties that are writable at run time.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242760(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa172196.aspx
https://msdn.microsoft.com/en-us/library/aa210373.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa219965.aspx
https://msdn.microsoft.com/en-us/library/aa172352.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa242760(v=vs.60).aspx

12. 1.2018 Not Operator

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Not Operator
See Also Example Specifics

Used to perform logical negation on an expression.

Syntax

result = Not expression

The Not operator syntax has these parts:

Part Description

result Required; any numeric variable.

expression Required; any expression.

Remarks

The following table illustrates how result is determined:

If expression is Then result is

True False

False True

Null Null

In addition, the Not operator inverts the bit values of any variable and sets the corresponding bit in result according to the
following table:

If bit in expression is Then bit in result is

o 1

1 0

https://msdn.microsoft.com/en-us/Nbrary/aa242842(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa262424(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa242846(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa242842(v=vs.60).aspx

12. 1.2018 Not Operator Example

Visual Basic for Applications Reference

Not Operator Example
This example uses the Not operator to perform logical negation on an expression.

Dim A, B, C, D, MyCheck
A = 10: B = 8 : C = 6 : D = Null ' Initialize variables.
MyCheck = Not(A > B) ' Returns False.
MyCheck = Not(B > A) ' Returns True.
MyCheck = Not(C > D) ' Returns Null.
MyCheck = Not A ' Returns -11 (bitwise comparison).

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242846(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa242846(v=vs.60).aspx

12. 1.2018 And Operator

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

And Operator
See Also Example Specifics

Used to perform a logical conjunction on two expressions.

Syntax

result = expressionl And expression2

The And operator syntax has these parts:

Part Description

result Required; any numeric variable.

expressionl Required; any expression.

expression2 Required; any expression.

Remarks

If both expressions evaluate to True, result is True. If either expression evaluates to False, result is False. The following table
illustrates how result is determined:

If expressionl is And expression2 is The result is

True True True

True False False

True Null Null

False True False

False False False

False Null False

Null True Null

https://msdn.microsoft.com/en-us/Nbrary/aa242751(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa262413(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa242756(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa242751(v=vs.60).aspx

12. 1.2018 And Operator

Null False False

Null Null Null

The And operator also performs a bitwise comparison of identically positioned bits in two numeric expressions and sets the
corresponding bit in result according to the following table:

If bit in expressionl is And bit in expression2 is The result is

0 0 0

0 1 0

1 0 0

1 1 1

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242751(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa242751(v=vs.60).aspx

12. 1.2018 And Operator Example

Visual Basic for Applications Reference

And Operator Example
This example uses the And operator to perform a logical conjunction on two expressions.

Dim A, B, C, D, MyCheck
A = 10: B = 8 : C = 6 : D = Null ' Initialize variables.
MyCheck = A > B And B > C ' Returns True.
MyCheck = B > A And B > C ' Returns False.
MyCheck = A > B And B > D ' Returns Null.
MyCheck = A And B ' Returns 8 (bitwise comparison).

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242756(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa242756(v=vs.60).aspx

12. 1.2018 Or Operator

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Or Operator
See Also Example Specifics

Used to perform a logical disjunction on two expressions.

Syntax

result = expressionl Or expression2

The Or operator syntax has these parts:

Part Description

result Required; any numeric variable.

expressionl Required; any expression.

expression2 Required; any expression.

Remarks

If either or both expressions evaluate to True, result is True. The following table illustrates how result is determined:

If expressionl is And expression2 is Then result is

True True True

True False True

True Null True

False True True

False False False

False Null Null

Null True True

Null False Null

https://msdn.microsoft.com/en-us/Nbrary/aa242850(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa262425(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa242853(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa242850(v=vs.60).aspx

12. 1.2018 Or Operator

Null Null Null

The Or operator also performs a bitwise comparison of identically positioned bits in two numeric expressions and sets the
corresponding bit in result according to the following table:

If bit in expressionl is And bit in expression2 is Then result is

0 0 0

0 1 1

1 0 1

1 1 1

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242850(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa242850(v=vs.60).aspx

12. 1.2018 Or Operator Example

Visual Basic for Applications Reference

Or Operator Example
This example uses the Or operator to perform logical disjunction on two expressions.

Dim A, B, C, D, MyCheck
A = 10: B = 8 : C = 6 : D = Null ' Initialize variables.
MyCheck = A > B Or B > C ' Returns True.
MyCheck = B > A Or B > C ' Returns True.
MyCheck = A > B Or B > D ' Returns True.
MyCheck = B > D Or B > A ' Returns Null.
MyCheck = A Or B ' Returns 10 (bitwise comparison).

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242853(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa242853(v=vs.60).aspx

12. 1.2018 Xor Operator

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Xor Operator
See Also Example Specifics

Used to perform a logical exclusion on two expressions.

Syntax

[result =] expressionl Xor expression2

The Xor operator syntax has these parts:

Part Description

result Optional; any numeric variable.

expressionl Required; any expression.

expression2 Required; any expression.

Remarks

If one, and only one, of the expressions evaluates to True, result is True. However, if either expression is Null, result is also
Null. When neither expression is Null, result is determined according to the following table:

If expressionl is And expression2 is Then result is

True True False

True False True

False True True

False False False

The Xor operator performs as both a logical and bitwise operator. A bit-wise comparison of two expressions using exclusive-
or logic to form the result, as shown in the following table:

https://msdn.microsoft.com/en-us/Nbrary/aa242859(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa262427(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa242860(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa242859(v=vs.60).aspx

12. 1.2018 Xor Operator

If bit in expressionl is And bit in expression2 is Then result is

0 0 0

0 1 1

1 0 1

1 1 0

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242859(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/Nbrary/aa242859(v=vs.60).aspx

12. 1.2018 Xor Operator Example

Visual Basic for Applications Reference

Xor Operator Example
This example uses the Xor operator to perform logical exclusion on two expressions.

Dim A, B, C, D, MyCheck
A = 10: B = 8 : C = 6 : D = Null ' Initialize variables.
MyCheck = A > B Xor B > C ' Returns False.
MyCheck = B > A Xor B > C ' Returns True.
MyCheck = B > A Xor C > B ' Returns False.
MyCheck = B > D Xor A > B ' Returns Null.
MyCheck = A Xor B ' Returns 2 (bitwise comparison).

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242860(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa242860(v=vs.60).aspx

12. 1.2018 Eqv Operator

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Eqv Operator
See Also Example Specifics

Used to perform a logical equivalence on two expressions.

Syntax

result = expressionl Eqv expression2

The Eqv operator syntax has these parts:

Part Description

result Required; any numeric variable.

expressionl Required; any expression.

expression2 Required; any expression.

Remarks

If either expression is Null, result is also Null. When neither expression is Null, result is determined according to the following
table:

If expressionl is And expression2 is The result is

True True True

True False False

False True False

False False True

The Eqv operator performs a bitwise comparison of identically positioned bits in two numeric expressions and sets the
corresponding bit in result according to the following table:

https://msdn.microsoft.com/en-us/Nbrary/aa242780(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa262416(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa242783(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa242780(v=vs.60).aspx

12. 1.2018 Eqv Operator

If bit in expressionl is And bit in expression2 is The result is

0 0 1

0 1 0

1 0 0

1 1 1

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242780(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/Nbrary/aa242780(v=vs.60).aspx

12. 1.2018 Eqv Operator Example

Visual Basic for Applications Reference

Eqv Operator Example
This example uses the Eqv operator to perform logical equivalence on two expressions.

Dim A, B, C, D, MyCheck
A = 10: B = 8: C = 6: D = Null ' Initialize variables.
MyCheck = A > B Eqv B > C ' Returns True.
MyCheck = B > A Eqv B > C ' Returns False.
MyCheck = A > B Eqv B > D ' Returns Null.
MyCheck = A Eqv B ' Returns -3 (bitwise comparison).

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242783(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa242783(v=vs.60).aspx

12. 1.2018 Mod Operator

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Mod Operator
See Also Example Specifics

Used to divide two numbers and return only the remainder.

Syntax

result = numberl Mod number2

The Mod operator syntax has these parts:

Part Description

result Required; any numeric variable.

numberl Required; any numeric expression.

number2 Required; any numeric expression.

Remarks

The modulus, or remainder, operator divides numberl by number2 (rounding floating-point numbers to integers) and returns
only the remainder as result. For example, in the following expression, A (result) equals 5.

A = 19 Mod 6.7

Usually, the data type of result is a Byte, Byte variant, Integer, Integer variant, Long, or Variant containing a Long, regardless
of whether or not result is a whole number. Any fractional portion is truncated. However, if any expression is Null, result is
Null. Any expression that is Empty is treated as 0.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242823(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa262422(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa263659.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa220031.aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/library/aa211377.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa242823(v=vs.60).aspx

12. 1.2018 Mod Operator Example

Mod Operator Example
This content is no longer actively maintained. It is provided as is, for anyone who may still be using these technologies, with
no warranties or claims of accuracy with regard to the most recent product version or service release.

This example sets the column width of every other column on Sheet1 to 4 points.

For Each col In Worksheets("Sheet1").Columns
If col.Column Mod 2 = 0 Then

col.ColumnWidth = 4
End If

Next col

This example sets the row height of every other row on Sheet1 to 4 points.

For Each rw In Worksheets(,,Sheet1,,).Rows
If rw.Row Mod 2 = 0 Then

rw.RowHeight = 4
End If

Next rw

This example selects every other item in list box one on Sheet1.

Dim items() As Boolean
Set lbox = Worksheets(,,Sheet1,,).ListBoxes(1)
ReDim items(1 To lbox.ListCount)
For i = 1 To lbox.ListCount

If i Mod 2 = 1 Then
items(i) = True

Else
items(i) = False

End If
Next
lbox.MultiSelect = xlExtended
lbox.Selected = items

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa263659.aspx 1/1

https://msdn.microsoft.com/en-us/library/aa263659.aspx

12. 1.2018 Is Operator

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Is Operator
See Also Example Specifics

Used to compare two object reference variables.

Syntax

result = objectl Is object2

The Is operator syntax has these parts:

Part Description

result Required; any numeric variable.

objectl Required; any object name.

object2 Required; any object name.

Remarks

If objectl and object2 both refer to the same object, result is True; if they do not, result is False. Two variables can be made to
refer to the same object in several ways.

In the following example, A has been set to refer to the same object as B:

Se t A = B

The following example makes A and B refer to the same object as C:

Se t A = C
Se t B = C

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242809(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa262420(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa263649.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa242809(v=vs.60).aspx

12. 1.2018 Is Operator Example

Is Operator Example
This content is no longer actively maintained. It is provided as is, for anyone who may still be using these technologies, with
no warranties or claims of accuracy with regard to the most recent product version or service release.

This example selects the intersection of two named ranges ("rg1" and "rg2") on Sheet1. If the ranges dont intersect, the
example displays a message.

Worksheets("Sheet1").Activate
Set isect = Application.Intersect(Range(,,rg1,,)J Range("rg2"))
If isect Is Nothing Then

MsgBox "Ranges do not intersect"
Else

isect.Select
End If

This example finds the first occurrence of the word Phoenix in column B on Sheet1 and then displays the address of the cell
that contains this word. If the word isnt found, the example diplays a message.

Set foundCell = Worksheets("Sheet1").Columns("B").Find("Phoenix")
If foundCell Is Nothing Then

MsgBox "The word was not found"
Else

MsgBox "The word was found in cell " & foundCell.Address
End If

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa263649.aspx 1/1

https://msdn.microsoft.com/en-us/library/aa263649.aspx

12. 1.2018 Imp Operator

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Imp Operator
See Also Example Specifics

Used to perform a logical implication on two expressions.

Syntax

result = expressionl Imp expression2

The Imp operator syntax has these parts:

Part Description

result Required; any numeric variable.

expressionl Required; any expression.

expression2 Required; any expression.

Remarks

The following table illustrates how result is determined:

If expressionl is And expression2 is The result is

True True True

True False False

True Null Null

False True True

False False True

False Null True

Null True True

Null False Null

https://msdn.microsoft.com/en-us/Nbrary/aa242794(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa262418(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa242798(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa242794(v=vs.60).aspx

12. 1.2018 Imp Operator

Null Null Null

The Imp operator performs a bitwise comparison of identically positioned bits in two numeric expressions and sets the
corresponding bit in result according to the following table:

If bit in expressionl is And bit in expression2 is The result is

0 0 1

0 1 1

1 0 0

1 1 1

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242794(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa242794(v=vs.60).aspx

12. 1.2018 Imp Operator Example

https://msdn.microsoft.com/en-us/Nbrary/aa242798(v=vs.60).aspx 1/1

Visual Basic for Applications Reference

Imp Operator Example
This example uses the Imp operator to perform logical implication on two expressions.

Dim A, B, C, D, MyCheck
A = 10: B = 8 : C = 6 : D = Null ' Initialize variables.
MyCheck = A > B Imp B > C ' Returns True.
MyCheck = A > B Imp C > B ' Returns False.
MyCheck = B > A Imp C > B ' Returns True.
MyCheck = B > A Imp C > D ' Returns True.
MyCheck = C > D Imp B > A ' Returns Null.
MyCheck = B Imp A ' Returns -1 (bitwise comparison).

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242798(v=vs.60).aspx

12. 1.2018 Like Operator

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Like Operator
See Also Example Specifics

Used to compare two strings.

Syntax

result = string Like pattern

The Like operator syntax has these parts:

Part Description

result Required; any numeric variable.

string Required; any string expression.

pattern Required; any string expression conforming to the pattern-matching conventions described in Remarks.

Remarks

If string matches pattern, result is True; if there is no match, result is False. If either string or pattern is Null, result is Null.

The behavior of the Like operator depends on the Option Compare statement. The default string-comparison method for
each module is Option Compare Binary.

Option Compare Binary results in string comparisons based on a sort order derived from the internal binary representations
of the characters. Sort order is determined by the code page. In the following example, a typical binary sort order is shown:

A < B < E < Z < a < b < e < z < < < < < <

Option Compare Text results in string comparisons based on a case-insensitive, textual sort order determined by your
system's locale. When you sort The same characters using Option Compare Text, the following text sort order is produced:

(A=a) < (=) < (B=b) < (E=e) < (=) < (Z=z) < (=)

Built-in pattern matching provides a versatile tool for string comparisons. The pattern-matching features allow you to use
wildcard characters, character lists, or character ranges, in any combination, to match strings. The following table shows the
characters allowed in pattern and what they match:

Characters in pattern Matches in string

https://msdn.microsoft.com/en-us/Nbrary/aa242817(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa262421(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa263658.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/library/aa212267.aspx
https://msdn.microsoft.com/en-us/library/aa171680.aspx
https://msdn.microsoft.com/en-us/library/aa212196.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa242817(v=vs.60).aspx

12. 1.2018 Like Operator

? Any single character.

* Zero or more characters.

Any single digit (09).

[charlist] Any single character in charlist.

['.chartist] Any single character not in charlist.

A group of one or more characters (chartist) enclosed in brackets ([]) can be used to match any single character in string and
can include almost any character code, including digits.

Note To match the special characters left bracket ([), question mark (?), number sign (#), and asterisk (*), enclose them in
brackets. The right bracket (]) can't be used within a group to match itself, but it can be used outside a group as an individual
character.

By using a hyphen () to separate the upper and lower bounds of the range, charlist can specify a range of characters. For
example, [A-Z] results in a match if the corresponding character position in string contains any uppercase letters in the
range AZ. Multiple ranges are included within the brackets without delimiters.

The meaning of a specified range depends on the character ordering valid at run time (as determined by Option Compare
and the locale setting of the system the code is running on). Using the Option Compare Binary example, the range [AE]
matches A, B and E. With Option Compare Text, [AE] matches A, a, , , B, b, E, e. The range does not match or because
accented characters fall after unaccented characters in the sort order.

Other important rules for pattern matching include the following:

• An exclamation point (!) at the beginning of chartist means that a match is made if any character except the characters
in charlist is found in string. When used outside brackets, the exclamation point matches itself.

• A hyphen () can appear either at the beginning (after an exclamation point if one is used) or at the end of charlist to
match itself. In any other location, the hyphen is used to identify a range of characters.

• When a range of characters is specified, they must appear in ascending sort order (from lowest to highest). [A-Z] is a
valid pattern, but [Z-A] is not.

• The character sequence [] is considered a zero-length string ("").

In some languages, there are special characters in the alphabet that represent two separate characters. For example, several
languages use the character "" to represent the characters "a" and "e" when they appear together. The Like operator
recognizes that the single special character and the two individual characters are equivalent.

When a language that uses a special character is specified in the system locale settings, an occurrence of the single special
character in either pattern or string matches the equivalent 2-character sequence in the other string. Similarly, a single special
character in pattern enclosed in brackets (by itself, in a list, or in a range) matches the equivalent 2-character sequence in
string.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242817(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa172352.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa242817(v=vs.60).aspx

12. 1.2018 Like Operator Example

Like Operator Example
This content is no longer actively maintained. It is provided as is, for anyone who may still be using these technologies, with
no warranties or claims of accuracy with regard to the most recent product version or service release.

This example deletes every defined name that contains "temp". The Option Compare Text statement must be included at
the top of any module that contains this example.

For Each nm In ActiveWorkbook.Names
If nm.Name Like "*temp*" Then

nm.Delete
End If

Next nm

This example adds an arrowhead to every shape on Sheet1 that has the word Line in its name.

For Each d In Worksheets("Sheet1").DrawingObjects
If d.Name Like "*Line*" Then

d.ArrowHeadLength = xlLong
d.ArrowHeadStyle = xlOpen
d.ArrowHeadWidth = xlNarrow

End If
Next

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa263658.aspx 1/1

https://msdn.microsoft.com/en-us/library/aa263658.aspx

12. 1.2018 Comparison Operators

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Comparison Operators
See Also Example Specifics

Used to compare expressions.

Syntax

result = expressionl comparisonoperator expression2

result = objectl Is object2

result = string Like pattern

Comparison operators have these parts:

Part Description

result Required; any numeric variable.

expression Required; any expression.

comparisonoperator Required; any comparison operator.

object Required; any object name.

string Required; any string expression.

pattern Required; any string expression or range of characters.

Remarks

The following table contains a list of the comparison operators and the conditions that determine whether result is True,
False, or Null:

Operator True if False if Null if

< (Less than) expressionl < expression2 expressionl > = expressionl or expression2 =
expression2 Null

<= (Less than or equal to) expressionl < = expressionl > expression2 expressionl or expression2 =
expression2 Null

https://msdn.microsoft.com/en-us/Nbrary/aa263418(v=vs.60).aspx 1/3

https://msdn.microsoft.com/en-us/library/aa443554(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa263419(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa210356.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa263418(v=vs.60).aspx

12. 1.2018 Comparison Operators

> (Greater than) expressionl > expression2 expressionl < =
expression2

expressionl or expression2 =
Null

>= (Greater than or equal
to)

expressionl > =
expression2

expressionl < expression2 expressionl or expression2 =
Null

= (Equal to) expressionl = expression2 expressionl <>
expression2

expressionl or expression2 =
Null

<> (Not equal to) expressionl <>
expression2

expressionl = expression2 expressionl or expression2 =
Null

Note The Is and Like operators have specific comparison functionality that differs from the operators in the table.

When comparing two expressions, you may not be able to easily determine whether the expressions are being compared as
numbers or as strings. The following table shows how the expressions are compared or the result when either expression is
not a Variant:

If Then

Both expressions are numeric data types (Byte, Boolean, Integer,
Long, Single, Double, Date, Currency, or Decimal)

Perform a numeric comparison.

Both expressions are String Perform a string comparison.

One expression is a numeric data type and the other is a Variant
that is, or can be, a number

Perform a numeric comparison.

One expression is a numeric data type and the other is a string
Variant that can't be converted to a number

A Type Mismatch error occurs.

One expression is a String and the other is any Variant except a
Null

Perform a string comparison.

One expression is Empty and the other is a numeric data type Perform a numeric comparison, using 0 as the
Empty expression.

One expression is Empty and the other is a String Perform a string comparison, using a zero-length
string ("") as the Empty expression.

If expressionl and expression2 are both Variant expressions, their underlying type determines how they are compared. The
following table shows how the expressions are compared or the result from the comparison, depending on the underlying
type of the Variant:

If Then

Both Variant expressions are numeric Perform a numeric comparison.

Both Variant expressions are strings Perform a string comparison.

https://msdn.microsoft.com/en-us/Nbrary/aa263418(v=vs.60).aspx 2/3

https://msdn.microsoft.com/en-us/library/aa220031.aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/library/aa212174.aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa210841.aspx
https://msdn.microsoft.com/en-us/library/aa210393.aspx
https://msdn.microsoft.com/en-us/library/aa212271.aspx
https://msdn.microsoft.com/en-us/library/aa212267.aspx
https://msdn.microsoft.com/en-us/library/aa211377.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa263418(v=vs.60).aspx

12. 1.2018 Comparison Operators

One Variant expression is numeric and the
other is a string

The numeric expression is less than the string expression.

One Variant expression is Empty and the other Perform a numeric comparison, using 0 as the Empty expression.
is numeric

One Variant expression is Empty and the other Perform a string comparison, using a zero-length string ("") as the
is a string Empty expression.

Both Variant expressions are Empty The expressions are equal.

When a Single is compared to a Double, the Double is rounded to the precision of the Single.

If a Currency is compared with a Single or Double, the Single or Double is converted to a Currency. Similarly, when a
Decimal is compared with a Single or Double, the Single or Double is converted to a Decimal. For Currency, any fractional
value less than .0001 may be lost; for Decimal, any fractional value less than 1E-28 may be lost, or an overflow error can
occur. Such fractional value loss may cause two values to compare as equal when they are not.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa263418(v=vs.60).aspx 3/3

https://msdn.microsoft.com/en-us/Nbrary/aa263418(v=vs.60).aspx

12. 1.2018 Comparison Operators Example

Visual Basic for Applications Reference

Comparison Operators Example
This example shows various uses of comparison operators, which you use to compare expressions.

Dim MyResult, Var1, Var2
MyResult = (45 < 35) ' Returns False.
MyResult = (45 = 45) ' Returns True.
MyResult = (4 <> 3) ' Returns True.
MyResult = ("5" > "4") ' Returns True.

Var1 = "5": Var2 = 4 ' Initialize variables.
MyResult = (Var1 > Var2) ' Returns True.

Var1 = 5: Var2 = Empty
MyResult = (Var1 > Var2) ' Returns True.

Var1 = 0: Var2 = Empty
MyResult = (Var1 = Var2) ' Returns True.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa263419(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa263419(v=vs.60).aspx

12. 1.2018 AddressOf Operator

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

AddressOf Operator
See Also Example Specifics

A unary operator that causes the address of the procedure it precedes to be passed to an API procedure that expects a
function pointer at that position in the argument list.

Syntax

AddressOf procedurename

The required procedurename specifies the procedure whose address is to be passed. It must represent a procedure in a
standard module module in the project in which the call is made.

Remarks

When a procedure name appears in an argument list, usually the procedure is evaluated, and the address of the procedures
return value is passed. AddressOf permits the address of the procedure to be passed to a Windows API function in a
dynamic-link library (DLL), rather passing the procedure's return value. The API function can then use the address to call the
Basic procedure, a process known as a callback. The AddressOf operator appears only in the call to the API procedure.

Although you can use AddressOf to pass procedure pointers among Basic procedures, you can't call a function through such
a pointer from within Basic. This means, for example, that a class written in Basic can't make a callback to its controller using
such a pointer. When using AddressOf to pass a procedure pointer among procedures within Basic, the parameter of the
called procedure must be typed As Long.

Warning Using AddressOf may cause unpredictable results if you don't completely understand the concept of function
callbacks. You must understand how the Basic portion of the callback works, and also the code of the DLL into which you are
passing your function address. Debugging such interactions is difficult since the program runs in the same process as the
development environment. In some cases, systematic debugging may not be possible.

Note You can create your own call-back function prototypes in DLLs compiled with Microsoft Visual C++ (or similar tools).
To work with AddressOf, your prototype must use the__stdcall calling convention. The default calling convention (__cdecl)
will not work with AddressOf.

Since the caller of a callback is not within your program, it is important that an error in the callback procedure not be
propagated back to the caller. You can accomplish this by placing the On Error Resume Next statement at the beginning of
the callback procedure.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242738(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa262412(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa242742(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa212239.aspx
https://msdn.microsoft.com/en-us/library/aa172189.aspx
https://msdn.microsoft.com/en-us/library/aa211355.aspx
https://msdn.microsoft.com/en-us/library/aa220050.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa242738(v=vs.60).aspx

12. 1.2018 AddressOf Operator Example

Visual Basic for Applications Reference

AddressOf Operator Example
The following example creates a form with a list box containing an alphabetically sorted list of the fonts in your system.

To run this example, create a form with a list box on it. The code for the form is as follows:

Option Explicit

Private Sub Form_Load()
Modulel.FillListWithFonts Listl

End Sub

Place the following code in a module. The third argument in the definition of the EnumFontFamilies function is a Long that
represents a procedure. The argument must contain the address of the procedure, rather than the value that the procedure
returns. In the call to EnumFontFamilies, the third argument requires the AddressOf operator to return the address of the
EnumFontFamProc procedure, which is the name of the callback procedure you supply when calling the Windows API
function, EnumFontFamilies. Windows calls EnumFontFamProc once for each of the font families on the system when you
pass AddressOf EnumFontFamProc to EnumFontFamilies. The last argument passed to EnumFontFamilies specifies the list
box in which the information is displayed.

'Font enumeration types
Public Const LF_FACESIZE = 32
Public Const LF_FULLFACESIZE = 64

Type LOGFONT
lfHeight As Long
lfWidth As Long
lfEscapement As Long
lfOrientation As Long
lfWeight As Long
lfItalic As Byte
lfUnderline As Byte
lfStrikeOut As Byte
lfCharSet As Byte
lfOutPrecision As Byte
lfClipPrecision As Byte
lfQuality As Byte
lfPitchAndFamily As Byte
lfFaceName(LF_FACESIZE) As Byte

End Type

Type NEWTEXTMETRIC
tmHeight As Long
tmAscent As Long
tmDescent As Long
tmInternalLeading As Long
tmExternalLeading As Long
tmAveCharWidth As Long
tmMaxCharWidth As Long
tmWeight As Long
tmOverhang As Long
tmDigitizedAspectX As Long
tmDigitizedAspectY As Long
tmFirstChar As Byte

https://msdn.microsoft.com/en-us/Nbrary/aa242742(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/Nbrary/aa242742(v=vs.60).aspx

12. 1.2018 AddressOf Operator Example

tmLastChar As Byte
tmDefaultChar As Byte
tmBreakChar As Byte
tmItalic As Byte
tmUnderlined As Byte
tmStruckOut As Byte
tmPitchAndFamily As Byte
tmCharSet As Byte
ntmFlags As Long
ntmSizeEM As Long
ntmCellHeight As Long
ntmAveWidth As Long

End Type

' ntmFlags field flags
Public Const NTM_REGULAR = &H40&
Public Const NTM_BOLD = &H20&
Public Const NTM_ITALIC = &H1&

' tmPitchAndFamily flags
Public Const TMPF_FIXED_PITCH = &H1
Public Const TMPF_VECTOR = &H2
Public Const TMPF_DEVICE = &H8
Public Const TMPF_TRUETYPE = &H4

Public Const ELF_VERSION = 0
Public Const ELF_CULTURE_LATIN = 0

' EnumFonts Masks
Public Const RASTER_FONTTYPE = &H1
Public Const DEVICE_FONTTYPE = &H2
Public Const TRUETYPE_FONTTYPE = &H4

Declare Function EnumFontFamilies Lib "gdi32" Alias _
"EnumFontFamiliesA" _
(ByVal hDC As Long, ByVal lpszFamily As String, _
ByVal lpEnumFontFamProc As Long, LParam As Any) As Long

Declare Function GetDC Lib "user32" (ByVal hWnd As Long) As Long
Declare Function ReleaseDC Lib "user32" (ByVal hWnd As Long, _

ByVal hDC As Long) As Long

Function EnumFontFamProc(lpNLF As LOGFONT, lpNTM As NEWTEXTMETRIC, _
ByVal FontType As Long, LParam As ListBox) As Long

Dim FaceName As String
Dim FullName As String

FaceName = StrConv(lpNLF.lfFaceName, vbUnicode)
LParam.AddItem Left$(FaceName, InStr(FaceName, vbNullChar) - 1)
EnumFontFamProc = 1

End Function

Sub FillListWithFonts(LB As ListBox)
Dim hDC As Long

LB.Clear
hDC = GetDC(LB.hWnd)
EnumFontFamilies hDC, vbNullString, AddressOf EnumFontFamProc, LB
ReleaseDC LB.hWnd, hDC

End Sub

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa242742(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/Nbrary/aa242742(v=vs.60).aspx

