
3. 1.2018 AppActivate Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

AppActivate Statement
See Also Example Specifics

Activates an application window.

Syntax

A ppA ctiv a te title[, wait]

The A p p A ctiv a te statement syntax has these named arguments:

Part Descrip tion

title Required. String expression specifying the title in the title bar of the application w indow you want to activate. The
task ID returned by the Shell function can be used in place of title to activate an application.

w ait Optional. Boolean value specifying whether the calling application has the focus before activating another. If False
(default), the specified application is immediately activated, even if the calling application does not have the focus.
If True, the calling application waits until it has the focus, then activates the specified application.

Remarks

The A p p A ctiv a te statement changes the focus to the named application or w indow but does not affect whether it is

maximized or minimized. Focus moves from the activated application w indow when the user takes some action to change

the focus or close the window. Use the Shell function to start an application and set the w indow style.

In determining which application to activate, title is compared to the title string of each running application. If there is no

exact match, any application whose title string begins with title is activated. If there is more than one instance of the

application named by title, one instance is arbitrarily activated.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa243211(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229611(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa243217(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa243211(v=vs.60).aspx

3. 1.2018 AppActivate Statement Example

Visual Basic for Applications Reference

AppActivate Statement Example
This example illustrates various uses of the A ppA ctiv a te statement to activate an application window. The Shell statements

assume the applications are in the paths specified.

Dim MyAppID, R e tu rnVa lue
A p p A c t iv a te " M ic ro s o f t Word" ' A c t iv a t e M ic r o s o f t

' Word.

' A p p A c t iv a te can a ls o use th e re tu rn v a lu e o f th e S h e l l fu n c t io n .
MyAppID = Shell("C:\WORD\WINWORD.EXE", 1) ' Run M ic r o s o f t Word.
A p p A c t iv a te MyAppID ' A c t iv a t e M ic r o s o f t

' Word.

' You can a ls o use th e re tu rn v a lu e o f th e S h e l l fu n c t io n .
R e tu rnVa lue = S h e ll(''c :\E X C E L \E X C E L .E X E ,,,1) ' Run M ic r o s o f t E x c e l.
A p p A c t iv a te R e tu rnVa lue ' A c t iv a te M ic r o s o f t

' E x c e l.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa243217(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa243217(v=vs.60).aspx

3. 1.2018 Beep Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference

Beep Statement
See Also Example Specifics

Sounds a tone through the computer's speaker.

Syntax

Beep

Remarks

The frequency and duration of the beep depend on your hardware and system software, and vary among computers.

© 2018 Microsoft

V isua l S tud io 6.0

https://msdn.microsoft.com/en-us/Nbrary/aa243233(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa243237(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243233(v=vs.60).aspx

3. 1.2018 Beep Statement Example

Visual Basic for Applications Reference

Beep Statement Example
This example uses the Beep statement to sound three consecutive tones through the computer's speaker.

Dim I
For I = 1 To 3 ' Loop 3 t im e s .

Beep ' Sound a to n e .
Next I

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243237(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa243237(v=vs.60).aspx

3. 1.2018 Call Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Call Statement
See Also Example Specifics

Transfers control to a Sub procedure, Function procedure, or dynamic-link library (DLL) procedure.

Syntax

[Call] name [argumentlist]

The Call statement syntax has these parts:

Part Descrip tion

Call Optional; keyword. If specified, you must enclose argumentlist in parentheses. For example:

C a l l M yProc(0)

name Required. Name of the procedure to call.

argumentlist Optional. Comma-delim ited list o f variables, arrays, or expressions to pass to the procedure. Components
of argumentlist may include the keywords ByVal or ByRef to describe how the arguments are treated by
the called procedure. However, ByVal and ByRef can be used with Call only when calling a DLL
procedure.

Remarks

You are not required to use the Call keyword when calling a procedure. However, if you use the Call keyword to call a

procedure that requires arguments, argumentlist must be enclosed in parentheses. If you om it the Call keyword, you also

must om it the parentheses around argumentlist. If you use either Call syntax to call any intrinsic or user-defined function, the

function's return value is discarded.

To pass a whole array to a procedure, use the array name followed by empty parentheses.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243242(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229612(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa243248(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa211355.aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa219965.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243242(v=vs.60).aspx

3. 1.2018 Call Statement Example

Visual Basic for Applications Reference

Call Statement Example
This example illustrates how the Call statement is used to transfer control to a Sub procedure, an intrinsic function, and a

dynamic-link library (DLL) procedure.

' C a l l a Sub p ro cedu re .
C a l l P rin tToD ebugW indow ("H e llo W o rld ")
' The above sta tem ent causes c o n t r o l to be passed to th e fo l lo w in g
' Sub p ro cedu re .
Sub P rin tToD ebugW indow (AnyS tring)

D e b u g .P r in t A n y S tr in g ' P r in t to th e Immediate window.
End Sub

' C a l l an i n t r i n s i c f u n c t io n . The re tu rn v a lu e o f th e fu n c t io n i s
' d is c a rd e d .
C a l l Shell(AppNam e, 1) ' AppName c o n ta in s th e path o f the

' e x e cu ta b le f i l e .

' C a l l a M ic r o s o f t Windows DLL p ro cedu re . The D e c la re sta tem ent must be
' P r iv a te in a C la s s Module, but not in a s tanda rd M odule.
P r iv a te D e c la re Sub MessageBeep L ib "U se r" (ByVa l N As In te g e r)
Sub C a l lM y D ll()

C a l l MessageBeep(0) ' C a l l Windows DLL p ro cedu re .
MessageBeep 0 ' C a l l aga in w ith o u t C a l l keyword.

End Sub

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243248(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa243248(v=vs.60).aspx

3. 1.2018 ChDir Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

ChDir Statement
See Also Example Specifics

Changes the current directory or folder.

Syntax

ChD ir path

The required path argument is a string expression that identifies which directory or folder becomes the new default directory

or folder. The path may include the drive. If no drive is specified, ChD ir changes the default directory or folder on the current

drive.

Remarks

The ChD ir statement changes the default directory but not the default drive. For example, if the default drive is C, the

follow ing statement changes the default directory on drive D, but C remains the default drive:

ChD ir "D:\TMP"

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa243256(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229613(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa243262(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa243256(v=vs.60).aspx

3. 1.2018 ChDir Statement Example

Visual Basic for Applications Reference

ChDir Statement Example
This example uses the ChD ir statement to change the current directory or folder.

' Change c u r re n t d ir e c t o r y o r f o ld e r to "MYDIR".
C hD ir "MYDIR"

' Assume "C :" i s the c u r re n t d r iv e . The f o l lo w in g sta tem ent changes
' the d e f a u lt d ir e c t o r y on d r iv e "D :" . "C :" rem ains th e c u r re n t d r iv e .
C hD ir "D:\WINDOWS\SYSTEM"

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243262(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa243262(v=vs.60).aspx

3. 1.2018 ChDrive Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

ChDrive Statement
See Also Example Specifics

Changes the current drive.

Syntax

ChD rive drive

The required drive argument is a string expression that specifies an existing drive. If you supply a zero-length string (""), the

current drive doesn't change. If the drive argument is a multiple-character string, ChD rive uses only the first letter.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243270(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229614(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa243277(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243270(v=vs.60).aspx

3. 1.2018 ChDrive Statement Example

Visual Basic for Applications Reference

ChDrive Statement Example
This example uses the ChD rive statement to change the current drive.

C hD rive "D" ' Make "D" th e c u r re n t d r iv e .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243277(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa243277(v=vs.60).aspx

3. 1.2018 Close Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Close Statement
See Also Example Specifics

Concludes input/output (I/O) to a file opened using the Open statement.

Syntax

C lose [filenumberlist]

The optional filenumberlist argument can be one or more file numbers using the follow ing syntax, where filenumber is any

valid file number:

[[#]filenumber] [, [#]filenumber] . . .

Remarks

If you om it filenumberlist, all active files opened by the Open statement are closed.

When you close files that were opened for O u tpu t or Append , the final buffer o f output is written to the operating system

buffer for that file. All buffer space associated with the closed file is released.

When the C lose statement is executed, the association of a file with its file number ends.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243283(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229615(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa243291(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243283(v=vs.60).aspx

3. 1.2018 Close Statement Example

Visual Basic for Applications Reference

Close Statement Example
This example uses the C lose statement to close all three files opened for Output.

Dim I , F ileNam e
For I = 1 To 3 ' Loop 3 t im e s .

FileNam e = "TEST" & I ' C re a te f i l e name.
Open FileNam e For O utput As #I ' Open f i l e .
P r in t # I, "T h is i s a t e s t . " ' W r ite s t r in g to f i l e .

Next I
C lo se ' C lo se a l l 3 open f i l e s .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243291(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa243291(v=vs.60).aspx

3. 1.2018 Const Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Const Statement
See Also Example Specifics

Declares constants for use in place of literal values.

Syntax

[Public | Private] Const constname [As type] = expression

The Const statement syntax has these parts:

Part Descrip tion

Pub lic Optional. Keyword used at module level to declare constants that are available to all procedures in all
modules. Not allowed in procedures.

P rivate Optional. Keyword used at module level to declare constants that are available only within the module
where the declaration is made. Not allowed in procedures.

constname Required. Name of the constant; follows standard variable naming conventions.

type Optional. Data type of the constant; may be Byte, Boolean, Integer, Long, Currency, Single, Double, Decimal
(not currently supported), Date, String, or Variant. Use a separate A s type clause for each constant being
declared.

expression Required. Literal, other constant, or any combination that includes all arithmetic or logical operators except
Is.

Remarks

Constants are private by default. Within procedures, constants are always private; their visib ility can't be changed. In standard

modules, the default visib ility o f module-level constants can be changed using the Pub lic keyword. In class modules,

however, constants can only be private and their visib ility can't be changed using the Pub lic keyword.

To combine several constant declarations on the same line, separate each constant assignment with a comma. When

constant declarations are combined in this way, the Pub lic or P riva te keyword, if used, applies to all o f them.

You can't use variables, user-defined functions, or intrinsic Visual Basic functions (such as Chr) in expressions assigned to

constants.

N o te Constants can make your programs self-documenting and easy to modify. Unlike variables, constants can't be

inadvertently changed while your program is running.

https://msdn.microsoft.com/en-us/library/aa243294(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229616(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa243304(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa210373.aspx
https://msdn.microsoft.com/en-us/library/aa171682.aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa171680.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa220031.aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/library/aa210393.aspx
https://msdn.microsoft.com/en-us/library/aa212174.aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa210841.aspx
https://msdn.microsoft.com/en-us/library/aa212271.aspx
https://msdn.microsoft.com/en-us/library/aa212239.aspx
https://msdn.microsoft.com/en-us/library/aa210316.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa243294(v=vs.60).aspx

3. 1.2018 Const Statement

If you don't explicitly declare the constant type using A s type, the constant has the data type that is most appropriate for

expression.

Constants declared in a Sub, Function, or P rope rty procedure are local to that procedure. A constant declared outside a

procedure is defined throughout the module in which it is declared. You can use constants anywhere you can use an

expression.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa243294(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa243294(v=vs.60).aspx

3. 1.2018 Const Statement Example

Visual Basic for Applications Reference

Const Statement Example
This example uses the Const statement to declare constants for use in place of literal values. Pub lic constants are declared in

the General section of a standard module, rather than a class module. Priva te constants are declared in the General section

of any type of module.

' C on s tan ts a re P r iv a te by d e f a u lt .
Const MyVar = 459

' D e c la re P u b l ic c o n s ta n t.
P u b l ic Const M yS tr in g = "HELP"

' D e c la re P r iv a te In te g e r c o n s ta n t .
P r iv a t e Const MyInt As In te g e r = 5

' D e c la re m u lt ip le c o n s ta n ts on same l in e .
Const M yStr = " H e llo " , MyDouble As Double = 3.4567

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa243304(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa243304(v=vs.60).aspx

3. 1.2018 Date Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Date Statement
See Also Example Specifics

Sets the current system date.

Syntax

Date = date

For systems running Microsoft W indows 95, the required date specification must be a date from January 1, 1980 through

December 31, 2099. For systems running Microsoft W indows NT, date must be a date from January 1, 1980 through

December 31, 2079.

© 2018 Microsoft

https://msdn.microsoftcom/en-us/Nbrary/aa243311(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229617(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa243318(v=vs.60).aspx
https://msdn.microsoftcom/en-us/Nbrary/aa243311(v=vs.60).aspx

3. 1.2018 Date Statement Example

Visual Basic for Applications Reference

Date Statement Example
This example uses the Date statement to set the computer system date. In the development environment, the date literal is

displayed in short date format using the locale settings of your code.

Dim MyDate
MyDate = # February 12, 1985# ' A s s ig n a d a te .
Date = MyDate ' Change system d a te .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa243318(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa243318(v=vs.60).aspx

3. 1.2018 Declare Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Declare Statement
See Also Example Specifics

Used at module level to declare references to external procedures in a dynamic-link library (DLL).

Syn tax 1

[Public | Private] Declare Sub name L ib "libname" [Alias "aliasname"] [([arglist])]

Syntax 2

[Public | Private] Declare Function name Lib "libname" [Alias "aliasname"] [([arglist])] [As type]

The Declare statement syntax has these parts:

Part Descrip tion

Pub lic Optional. Used to declare procedures that are available to all other procedures in all modules.

P rivate Optional. Used to declare procedures that are available only within the module where the declaration is
made.

Sub Optional (either Sub or Function must appear). Indicates that the procedure doesn't return a value.

Function Optional (either Sub or Function must appear). Indicates that the procedure returns a value that can be used
in an expression.

name Required. Any valid procedure name. Note that DLL entry points are case sensitive.

Lib Required. Indicates that a DLL or code resource contains the procedure being declared. The Lib clause is
required for all declarations.

libname Required. Name of the DLL or code resource that contains the declared procedure.

A lias Optional. Indicates that the procedure being called has another name in the DLL. This is useful when the
external procedure name is the same as a keyword. You can also use A lia s when a DLL procedure has the
same name as a public variable, constant, or any other procedure in the same scope. A lia s is also useful if
any characters in the DLL procedure name aren't allowed by the DLL naming convention.

aliasname Optional. Name of the procedure in the DLL or code resource. If the first character is not a number sign (#),
aliasname is the name of the procedure's entry point in the DLL. If (#) is the first character, all characters that
follow must indicate the ordinal number of the procedure's entry point.

arglist Optional. List o f variables representing arguments that are passed to the procedure when it is called.

https://msdn.microsoft.com/en-us/Nbrary/aa243324(v=vs.60).aspx 1/3

https://msdn.microsoft.com/en-us/library/aa229618(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa243341(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa171682.aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa211355.aspx
https://msdn.microsoft.com/en-us/library/aa171680.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa210373.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243324(v=vs.60).aspx

3. 1.2018 Declare Statement

type Optional. Data type of the value returned by a Function procedure; may be Byte, Boolean, Integer, Long,
Currency, Single, Double, Decimal (not currently supported), Date, String (variable length only), or Variant, a
user-defined type, or an object type.

The arglist argument has the follow ing syntax and parts:

[Optional] [ByVal | ByRef] [ParamArray] varname[()] [As type]

Part Descrip tion

O p tiona l Optional. Indicates that an argument is not required. If used, all subsequent arguments in arglist must also
be optional and declared using the O p tiona l keyword. O p tiona l can't be used for any argument if
Param Array is used.

ByVal Optional. Indicates that the argument is passed by value.

ByRef Indicates that the argument is passed by reference. ByRef is the default in Visual Basic.

Param Array Optional. Used only as the last argument in arglist to indicate that the final argument is an O p tiona l array
of Va rian t elements. The Param Array keyword allows you to provide an arbitrary number of arguments.
The Param Array keyword can't be used with ByVal, ByRef, or Optiona l.

varname Required. Name of the variable representing the argument being passed to the procedure; follows
standard variable naming conventions.

() Required for array variables. Indicates that varname is an array.

type Optional. Data type of the argument passed to the procedure; may be Byte, Boolean, Integer, Long,
Currency, Single, Double, Decim al (not currently supported), Date, S tring (variable length only), Object,
Variant, a user-defined type, or an object type.

Remarks

For Function procedures, the data type of the procedure determines the data type it returns. You can use an A s clause

follow ing arglist to specify the return type of the function. W ithin arglist, you can use an A s clause to specify the data type of

any of the arguments passed to the procedure. In addition to specifying any of the standard data types, you can specify A s

A n y in arglist to inhibit type checking and allow any data type to be passed to the procedure.

Empty parentheses indicate that the Sub or Function procedure has no arguments and that Visual Basic should ensure that

none are passed. In the follow ing example, F i r s t takes no arguments. If you use arguments in a call to F i r s t , an error

occurs:

D e c la re Sub F i r s t L ib "M yL ib " ()

If you include an argument list, the number and type of arguments are checked each time the procedure is called. In the

follow ing example, F i r s t takes one Long argument:

D e c la re Sub F i r s t L ib "M yL ib " (X As Long)

N o te You can't have fixed-length strings in the argument list o f a Declare statement; only variable-length strings can be

passed to procedures. Fixed-length strings can appear as procedure arguments, but they are converted to variable-length

strings before being passed.

https://msdn.microsoft.com/en-us/Nbrary/aa243324(v=vs.60).aspx 2/3

https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa220031.aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/library/aa210393.aspx
https://msdn.microsoft.com/en-us/library/aa212174.aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa210841.aspx
https://msdn.microsoft.com/en-us/library/aa212271.aspx
https://msdn.microsoft.com/en-us/library/aa219965.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243324(v=vs.60).aspx

3. 1.2018 Declare Statement

N o te The vbN u llS tr in g constant is used when calling external procedures, where the external procedure requires a string

whose value is zero. This is not the same thing as a zero-length string ("").

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243324(v=vs.60).aspx 3/3

https://msdn.microsoft.com/en-us/Nbrary/aa243324(v=vs.60).aspx

3. 1.2018 Declare Statement Example

Visual Basic for Applications Reference

Declare Statement Example
This example shows how the Declare statement is used at the module level o f a standard module to declare a reference to

an external procedure in a dynamic-link library (DLL). You can place the Declare statements in class modules if the Declare

statements are Private.

' In M ic r o s o f t Windows (1 6 - b it) :
D e c la re Sub MessageBeep L ib "U se r" (B yVa l N As In te g e r)
' Assume SomeBeep i s an a l i a s f o r the p rocedu re name.
D e c la re Sub MessageBeep L ib "U se r" A l ia s "Som eBeep"(ByVal N As In te g e r)
' Use an o r d in a l in the A l ia s c la u se to c a l l G e tW inF lags .
D e c la re F u n c t io n G etW inF lags L ib "K e rn e l" A l i a s "# 132"() As Long

' In 3 2 -b it M ic r o s o f t Windows system s, s p e c if y th e l i b r a r y USER32.DLL,
' ra th e r than USER.DLL. You can use c o n d it io n a l c o m p ila t io n to w r ite
' code th a t can run on e i t h e r Win32 o r W in16.
If Win32 Then

D e c la re Sub MessageBeep L ib "U ser32" (B yVa l N As Long)
Else

D e c la re Sub MessageBeep L ib "U se r" (B yVa l N As In te g e r)
#End I f

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243341(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa243341(v=vs.60).aspx

3. 1.2018 Deftype Statements

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Deftype Statements
See Also Example Specifics

Used at module level to set the default data type for variables, arguments passed to procedures, and the return type for

Function and P rope rty Get procedures whose names start with the specified characters.

Syntax

D efBoo l letterrange[, letterrange] . . .

DefByte letterrange[, letterrange] . . .

DefInt letterrange[, letterrange] . . .

DefLng letterrange[, letterrange] . . .

DefCur letterrange[, letterrange] . . .

DefSng letterrange[, letterrange] . . .

De fD b l letterrange[, letterrange] . . .

DefDec letterrange[, letterrange] . . .

DefDate letterrange[, letterrange] . . .

DefS tr letterrange[, letterrange] . . .

DefObj letterrange[, letterrange] . . .

DefVar letterrange[, letterrange] . . .

The required letterrange argument has the follow ing syntax:

letterl [-letter2]

The letterl and letter2 arguments specify the name range for which you can set a default data type. Each argument

represents the first letter o f the variable, argument, Function procedure, or P rope rty Get procedure name and can be any

letter o f the alphabet. The case of letters in letterrange isn't significant.

Remarks

The statement name determines the data type:

S tatem ent Data Type

https://msdn.microsoft.com/en-us/Nbrary/aa263421(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa443557(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa263422(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa171682.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa263421(v=vs.60).aspx

3. 1.2018 Deftype Statements

DefBoo l Boolean

DefByte Byte

DefInt Integer

DefLng Long

DefCur Currency

DefSng Single

DefDb l Double

DefDec Decimal (not currently supported)

DefDate Date

DefStr String

DefObj Object

DefVar Variant

For example, in the follow ing program fragment, Message is a string variable:

D e fS tr A-Q

Message = "Out o f s ta c k sp a ce ."

A Deftype statement affects only the module where it is used. For example, a DefInt statement in one module affects only

the default data type of variables, arguments passed to procedures, and the return type for Function and P rope rty Get

procedures declared in that module; the default data type of variables, arguments, and return types in other modules is

unaffected. If not explicitly declared with a Deftype statement, the default data type for all variables, all arguments, all

Function procedures, and all P rope rty Get procedures is Variant.

When you specify a letter range, it usually defines the data type for variables that begin with letters in the first 128 characters

of the character set. However, when you specify the letter range AZ, you set the default to the specified data type for all

variables, including variables that begin with international characters from the extended part o f the character set (128255).

Once the range AZ has been specified, you can't further redefine any subranges of variables using Deftype statements. Once

a range has been specified, if you include a previously defined letter in another Deftype statement, an error occurs. However,

you can explicitly specify the data type of any variable, defined or not, using a D im statement with an A s type clause. For

example, you can use the follow ing code at module level to define a variable as a D oub le even though the default data type

is Integer:

D e fIn t A-Z
Dim TaxRate As Double

Deftype statements don't affect elements of user-defined types because the elements must be explicitly declared.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa263421(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa220031.aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/library/aa210393.aspx
https://msdn.microsoft.com/en-us/library/aa212174.aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa210841.aspx
https://msdn.microsoft.com/en-us/library/aa212271.aspx
https://msdn.microsoft.com/en-us/library/aa171802.aspx
https://msdn.microsoft.com/en-us/library/aa171680.aspx
https://msdn.microsoft.com/en-us/library/aa263421(v=vs.60).aspx

3. 1.2018 Deftype Statements Example

Visual Basic for Applications Reference

Deftype Statements Example
This example shows various uses of the Deftype statements to set default data types of variables and function procedures

whose names start with specified characters. The default data type can be overridden only by explicit assignment using the

D im statement. Deftype statements can only be used at the module level (that is, not within procedures).

' V a r ia b le names b eg in n in g w ith A th rough K d e f a u lt to In te g e r .
D e fIn t A-K
' V a r ia b le names b eg in n in g w ith L th rough Z d e f a u lt to S t r in g .
D e fS tr L-Z
C a lcV a r = 4 ' I n i t i a l i z e In te g e r .
S t r in g V a r = " H e llo th e re " ' I n i t i a l i z e S t r in g .
AnyVar = " H e llo " ' Causes "Type m ism atch" e r r o r .
Dim C a lc As Double ' E x p l i c i t l y se t th e type to Doub le .
C a lc = 2 .3455 ' A s s ig n a Doub le .

' D e ftype sta tem ents a ls o a p p ly to fu n c t io n p ro ced u re s .
CalcNum = A T e s tF u n c t io n (4) ' C a l l u s e r -d e f in e d fu n c t io n .
' A T e s tF u n c t io n fu n c t io n p rocedu re d e f in i t io n .
Fun c t io n ATestFunction (IN um ber)

A T e s tF u n c t io n = INumber * 2 ' Retu rn v a lu e i s an in t e g e r .
End Fun c t io n

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa263422(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa263422(v=vs.60).aspx

3. 1.2018 DeleteSetting Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

DeleteSetting Statement
See Also Example Specifics

Deletes a section or key setting from an application's entry in the W indows registry.

Syntax

De leteSetting appname, section[, key]

The De leteSetting statement syntax has these named arguments:

Part Descrip tion

appname Required. String expression containing the name of the application or project to which the section or key
setting applies.

section Required. String expression containing the name of the section where the key setting is being deleted. If only
appname and section are provided, the specified section is deleted along with all related key settings.

key Optional. String expression containing the name of the key setting being deleted.

Remarks

If all arguments are provided, the specified setting is deleted. A run-time error occurs if you attempt to use the

De leteSetting statement on a non-existent section or key setting.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243347(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229619(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa243351(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa172189.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243347(v=vs.60).aspx

3. 1.2018 DeleteSetting Statement Example

Visual Basic for Applications Reference

DeleteSetting Statement Example
The follow ing example first uses the SaveSetting statement to make entries in the W indows registry (or .ini file on 16-bit

W indows platforms) for the MyApp application, and then uses the De leteSetting statement to remove them. Because no key
argument is specified, the whole section is deleted, including the section name and all its keys.

' P la ce some s e t t in g s in th e r e g is t r y .
S a v e S e tt in g appname := "MyApp", s e c t io n := " S ta r tu p " ,

key := "Top", s e t t in g := 75
S a v e S e tt in g "M yA p p " ,"S ta r tu p " , " L e f t " , 50
' Remove s e c t io n and a l l i t s s e t t in g s from r e g is t r y .
D e le te S e t t in g "MyApp", "S ta r tu p "

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243351(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa243351(v=vs.60).aspx

3. 1.2018 Dim Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Dim Statement
See Also Example Specifics

Declares variables and allocates storage space.

Syntax

D im [W ithEvents] varname[([subscripts])] [As [New] type] [, [W ithEvents] vamame[([subscripts])] [As [New] type]]

The D im statement syntax has these parts:

Part Descrip tion

W ithEvents Optional. Keyword that specifies that varname is an object variable used to respond to events triggered by
an ActiveX object. W ithEven ts is valid only in class modules. You can declare as many individual variables
as you like using W ithEvents, but you can't create arrays with W ithEvents. You can't use N ew with
W ithEvents.

varname Required. Name of the variable; follows standard variable naming conventions.

subscripts Optional. Dimensions of an array variable; up to 60 multiple dimensions may be declared. The subscripts
argument uses the follow ing syntax:
[lower To] upper [, [lower To] upper] . . .

When not explicitly stated in lower, the lower bound of an array is controlled by the O p tion Base

statement. The lower bound is zero if no O p tion Base statement is present.

New Optional. Keyword that enables implicit creation of an object. If you use N ew when declaring the object
variable, a new instance of the object is created on first reference to it, so you don't have to use the Set
statement to assign the object reference. The N ew keyword can't be used to declare variables of any
intrinsic data type, can't be used to declare instances of dependent objects, and cant be used with
W ithEvents.

type Optional. Data type of the variable; may be Byte, Boolean, Integer, Long, Currency, Single, Double, Decimal
(not currently supported), Date, String (for variable-length strings), S tring * length (for fixed-length
strings), Object, Variant, a user-defined type, or an object type. Use a separate A s type clause for each
variable you declare.

Remarks

Variables declared with D im at the module level are available to all procedures within the module. A t the procedure level

variables are available only within the procedure.

https://msdn.microsoft.com/en-us/Nbrary/aa243352(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229620(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa243353(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa210316.aspx
https://msdn.microsoft.com/en-us/library/aa219965.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa220031.aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/library/aa210393.aspx
https://msdn.microsoft.com/en-us/library/aa212174.aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa210841.aspx
https://msdn.microsoft.com/en-us/library/aa212271.aspx
https://msdn.microsoft.com/en-us/library/aa171802.aspx
https://msdn.microsoft.com/en-us/library/aa171682.aspx
https://msdn.microsoft.com/en-us/library/aa171680.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243352(v=vs.60).aspx

3. 1.2018 Dim Statement

Use the D im statement at module or procedure level to declare the data type of a variable. For example, the following

statement declares a variable as an Integer.

Dim NumberOfEmployees As In te g e r

Also use a D im statement to declare the object type of a variable. The follow ing declares a variable for a new instance of a

worksheet.

Dim X As New W orksheet

If the N ew keyword is not used when declaring an object variable, the variable that refers to the object must be assigned an

existing object using the Set statement before it can be used. Until it is assigned an object, the declared object variable has

the special value N o th ing , which indicates that it doesn't refer to any particular instance of an object.

You can also use the D im statement with empty parentheses to declare a dynamic array. After declaring a dynamic array, use

the ReD im statement within a procedure to define the number of dimensions and elements in the array. If you try to

redeclare a dimension for an array variable whose size was explicitly specified in a Private, Public, or D im statement, an error

occurs.

If you don't specify a data type or object type, and there is no Deftype statement in the module, the variable is V a rian t by

default.

When variables are initialized, a numeric variable is initialized to 0, a variable-length string is initialized to a zero-length string

(""), and a fixed-length string is filled with zeros. Va rian t variables are initialized to Empty. Each element of a user-defined

type variable is initialized as if it were a separate variable.

N o te When you use the D im statement in a procedure, you generally put the D im statement at the beginning of the

procedure.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243352(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa211377.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243352(v=vs.60).aspx

3. 1.2018 Dim Statement Example

Visual Basic for Applications Reference

Dim Statement Example
This example shows the D im statement used to declare variables. It also shows the D im statement used to declare arrays.

The default lower bound for array subscripts is 0 and can be overridden at the module level using the O p tion Base

statement.

' AnyValue and MyValue are d e c la re d as V a r ia n t by d e f a u lt w ith va lu e s
' s e t to Empty.
Dim AnyVa lue , MyValue

' E x p l i c i t l y d e c la re a v a r ia b le o f type In te g e r .
Dim Number As In te g e r

' M u lt ip le d e c la r a t io n s on a s in g le l i n e . Ano the rVa r i s o f type V a r ia n t
' because i t s type i s o m itte d .
Dim A n o th e rV a r, C ho ice As Boo lean , B ir th D a te As Date

' D ayArray i s an a r ra y o f V a r ia n t s w ith 51 e lem ents in dexed , from
' 0 th ru 50, assum ing O p tion Base i s se t to 0 (d e fa u lt) f o r
' the c u r re n t module.
Dim D ayA rray (50)

' M a t r ix i s a tw o -d im en s io n a l a r ra y o f in t e g e r s .
Dim M a t r ix (3 , 4) As In te g e r

' M yM atrix i s a th re e -d im e n s io n a l a r ra y o f doub les w ith e x p l i c i t
' bounds.
Dim M yM a tr ix (1 To 5, 4 To 9, 3 To 5) As Double

' B ir th D a y i s an a r ra y o f d a te s w ith in d exe s from 1 to 10.
Dim B ir th D a y (1 To 10) As Date

' M yArray i s a dynam ic a r ra y o f v a r ia n t s .
Dim M yA rray ()

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243353(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa243353(v=vs.60).aspx

3. 1.2018 Do...Loop Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Do...Loop Statement
See Also Example Specifics

Repeats a block of statements while a condition is True or until a condition becomes True.

Syntax

Do [{While | Until} condition]
[statements]
[Exit Do]

[statements]

Loop

Or, you can use this syntax:

Do

[statements]
[Exit Do]

[statements]

Loop [{While | Until} condition]

The Do Loop statement syntax has these parts:

Part Descrip tion

condition Optional. Numeric expression or string expression that is True or False. If condition is Null, condition is
treated as False.

statements One or more statements that are repeated while, or until, condition is True.

Remarks

Any number of Ex it Do statements may be placed anywhere in the D oLoop as an alternate way to exit a DoLoop. Exit Do is

often used after evaluating some condition, for example, IfThen, in which case the Exit Do statement transfers control to the

statement immediately follow ing the Loop.

When used within nested D oLoop statements, Exit Do transfers control to the loop that is one nested level above the loop

where Exit Do occurs.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243354(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229621(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa263661.aspx
https://msdn.microsoft.com/en-us/library/aa212247.aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243354(v=vs.60).aspx

3. 1.2018 Do...Loop Statement Example

Do...Loop Statement Example
This content is no longer actively maintained. It is provided as is, for anyone who may still be using these technologies, with

no warranties or claims of accuracy with regard to the most recent product version or service release.

This example sorts the data in the first column on Sheet1 and then deletes any rows that contain duplicate data.

W o rk sh e e ts ("S h e e t1 ") .R a n g e ("A 1 ") .S o rt _
key1 := W orkshee ts("Shee t1 ").R ange ("A 1 ")

Set c u r r e n tC e l l = W o rk sh ee ts ("S h ee t1 ").R an g e ("A 1 ")
Do W h ile Not I s E m p ty (c u r re n tC e ll)

Set n e x tC e ll = c u r r e n t C e l l .O f f s e t (1 , 0)
I f n e x tC e ll.V a lu e = c u r r e n tC e l l .V a lu e Then

c u r r e n tC e ll.E n t ir e R o w .D e le te
End I f
Set c u r r e n tC e l l = n e x tC e ll

Loop

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa263661.aspx 1/1

https://msdn.microsoft.com/en-us/library/aa263661.aspx

3. 1.2018 End Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

End Statement
See Also Example Specifics

Ends a procedure or block.

Syntax

End

End Function

End If

End P rope rty

End Select

End Sub

End Type

End W ith

The End statement syntax has these forms:

Statem ent Descrip tion

End Terminates execution immediately. Never required by itself but may be placed anywhere in a procedure to
end code execution, close files opened with the Open statement and to clear variables.

End
Function

Required to end a Function statement.

End If Required to end a block IfThenElse statement.

End
Prope rty

Required to end a P rope rty Let, P rope rty Get, or P rope rty Set procedure.

End Select Required to end a Select Case statement.

End Sub Required to end a Sub statement.

End Type Required to end a user-defined type definition (Type statement).

https://msdn.microsoft.com/en-us/Nbrary/aa243356(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229622(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa243357(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243356(v=vs.60).aspx

3. 1.2018 End Statement

End W ith Required to end a W ith statement.

Remarks

When executed, the End statement resets all module-level variables and all static local variables in all modules. To preserve

the value of these variables, use the S top statement instead. You can then resume execution while preserving the value of

those variables.

N o te The End statement stops code execution abruptly, w ithout invoking the Unload, QueryUnload, or Terminate event, or

any other Visual Basic code. Code you have placed in the Unload, QueryUnload, and Terminate events of forms and class

modules is not executed. Objects created from class modules are destroyed, files opened using the Open statement are

closed, and memory used by your program is freed. Object references held by other programs are invalidated.

The End statement provides a way to force your program to halt. For normal termination of a Visual Basic program, you

should unload all forms. Your program closes as soon as there are no other programs holding references to objects created

from your public class modules and no code executing.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243356(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa171682.aspx
https://msdn.microsoft.com/en-us/library/aa171680.aspx
https://msdn.microsoft.com/en-us/library/aa210316.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243356(v=vs.60).aspx

3. 1.2018 End Statement Example

Visual Basic for Applications Reference

End Statement Example
This example uses the End Statement to end code execution if the user enters an invalid password.

Sub Form_Load
Dim Password, Pword
PassWord = "S w o rd fish "
Pword = Inpu tBox("Type in you r passw ord")
I f Pword <> PassWord Then

MsgBox "S o r ry , in c o r r e c t password"
End

End I f
End Sub

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243357(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa243357(v=vs.60).aspx

3. 1.2018 Enum Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Enum Statement
See Also Example Specifics

Declares a type for an enumeration.

Syntax

[Public | Private] Enum name

membername [= constantexpression]

membername [= constantexpression]

End Enum

The Enum statement has these parts:

Part Descrip tion

Pub lic Optional. Specifies that the Enum type is visible throughout the project. Enum types are Pub lic by
default.

P rivate Optional. Specifies that the Enum type is visible only within the module in which it appears.

name Required. The name of the Enum type. The name must be a valid Visual Basic identifier and is
specified as the type when declaring variables or parameters of the Enum type.

membername Required. A valid Visual Basic identifier specifying the name by which a constituent element of the
Enum type will be known.

constantexpression Optional. Value of the element (evaluates to a Long). If no constantexpression is specified, the value
assigned is either zero (if it is the first membername), or 1 greater than the value of the immediately
preceding membername.

Remarks

Enumeration variables are variables declared with an Enum type. Both variables and parameters can be declared with an

Enum type. The elements of the Enum type are initialized to constant values within the Enum statement. The assigned

values can't be modified at run time and can include both positive and negative numbers. For example:

https://msdn.microsoft.com/en-us/Nbrary/aa243358(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa243359(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa172189.aspx
https://msdn.microsoft.com/en-us/library/aa171680.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa172352.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243358(v=vs.60).aspx

3. 1.2018 Enum Statement

Enum S e c u r ity L e v e l
I l le g a lE n t r y = -1
S e c u r it y L e v e l l = 0
S e c u r ity L e v e l2 = 1

End Enum

An Enum statement can appear only at module level. Once the Enum type is defined, it can be used to declare variables,

parameters, or procedures returning its type. You can't qualify an Enum type name with a module name. Pub lic Enum types

in a class module are not members of the class; however, they are written to the type library. Enum types defined in standard

modules arent written to type libraries. Pub lic Enum types of the same name can't be defined in both standard modules and

class modules, since they share the same name space. When two Enum types in different type libraries have the same name,

but different elements, a reference to a variable of the type depends on which type library has higher priority in the

References.

You can't use an Enum type as the target in a W ith block.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243358(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa171682.aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa212239.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243358(v=vs.60).aspx

3. 1.2018 Enum Statement Example

Visual Basic for Applications Reference

Enum Statement Example
The follow ing example shows the Enum statement used to define a collection of named constants. In this case, the constants

are colors you might choose to design data entry forms for a database.

P u b l ic Enum In te r fa c e C o lo r s
icM is ty R o se = &HE1E4FF&
ic S la te G ra y = &H908070&
icD odge rB lue = &HFF901E&
icD eepSkyB lue = &HFFBF00&
ic S p r in g G re e n = &H7FFF00&
ic F o re s tG re e n = &H228B22&
icG o ld en ro d = &H20A5DA&
i c F i r e b r i c k = &H2222B2&

End Enum

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243359(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa243359(v=vs.60).aspx

3. 1.2018 Erase Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Erase Statement
See Also Example Specifics

Reinitializes the elements of fixed-size arrays and releases dynamic-array storage space.

Syntax

Erase arraylist

The required arraylist argument is one or more comma-delim ited array variables to be erased.

Remarks

Erase behaves differently depending on whether an array is fixed-size (ordinary) or dynamic. Erase recovers no memory for

fixed-size arrays. Erase sets the elements of a fixed array as follows:

Type o f A rray Effect o f Erase on F ixed -A rray Elements

Fixed numeric array Sets each element to zero.

Fixed string array (variable length) Sets each element to a zero-length string ("").

Fixed string array (fixed length) Sets each element to zero.

Fixed Variant array Sets each element to Empty.

Array of user-defined types Sets each element as if it were a separate variable.

Array of objects Sets each element to the special value Noth ing .

Erase frees the memory used by dynamic arrays. Before your program can refer to the dynamic array again, it must redeclare

the array variable's dimensions using a ReD im statement.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243360(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229623(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa243361(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa219965.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa211377.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243360(v=vs.60).aspx

3. 1.2018 Erase Statement Example

Visual Basic for Applications Reference

Erase Statement Example
This example uses the Erase statement to reinitialize the elements of fixed-size arrays and deallocate dynamic-array storage

space.

' D e c la re a r ra y v a r ia b le s .
Dim NumArray(10) As In te g e r ' In te g e r a r ra y .
Dim S trV a rA rra y (1 0) As S t r in g ' V a r ia b le - s t r in g a r ra y .
Dim S t rF ix A r ra y (1 0) As S t r in g * 10 ' F ix e d - s t r in g a r ra y .
Dim V a rA rra y (1 0) As V a r ia n t ' V a r ia n t a r ra y .
Dim D ynam icA rray() As In te g e r ' Dynamic a r ra y .
ReDim D ynam icA rray(10) ' A l lo c a t e s to ra ge space.
E rase NumArray ' Each e lem ent s e t to 0.
E rase S t rV a rA r ra y ' Each e lem ent s e t to z e ro - le n g th

' s t r in g (" ") .
E rase S t r F ix A r r a y ' Each e lem ent s e t to 0.
E rase V a rA rra y ' Each e lem ent s e t to Empty.
E rase Dynam icA rray ' F ree memory used by a r ra y .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243361(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa243361(v=vs.60).aspx

3. 1.2018 Error Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Error Statement
See Also Example Specifics

Simulates the occurrence of an error.

Syntax

Error errornumber

The required errornumber can be any valid error number.

Remarks

The Error statement is supported for backward compatibility. In new code, especially when creating objects, use the Err

object's Raise method to generate run-time errors.

If errornumber is defined, the Error statement calls the error handler after the properties of Err object are assigned the

follow ing default values:

P rope rty Va lue

Num ber Value specified as argument to Error statement. Can be any valid error number.

Source Name of the current Visual Basic project.

Descrip tion String expression corresponding to the return value of the Error function for the specified Num ber, if
this string exists. If the string doesn't exist, D escrip tion contains a zero-length string ("").

He lpF ile The fully qualified drive, path, and file name of the appropriate Visual Basic Help file.

H e lpCon text The appropriate Visual Basic Help file context ID for the error corresponding to the N um ber property.

LastDLLError Zero.

If no error handler exists or if none is enabled, an error message is created and displayed from the Err object properties.

N o te Not all Visual Basic host applications can create objects. See your host application's documentation to determine

whether it can create classes and objects.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243362(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229624(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa243363(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa172196.aspx
https://msdn.microsoft.com/en-us/library/aa172189.aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa220050.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243362(v=vs.60).aspx

3. 1.2018 Error Statement Example

Visual Basic for Applications Reference

Error Statement Example
This example uses the Error statement to simulate error number 11.

On E r ro r Resume Next ' D e fe r e r r o r h a n d lin g .
E r r o r 11 ' S im u la te th e " D iv is io n by z e ro " e r r o r .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243363(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa243363(v=vs.60).aspx

3. 1.2018 Event Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Event Statement
See Also Example Specifics

Declares a user-defined event.

Syntax

[Public] Event procedurename [(arglist)]

The Event statement has these parts:

Part Descrip tion

Pub lic Optional. Specifies that the Event visible throughout the project. Events types are Pub lic by default.
Note that events can only be raised in the module in which they are declared.

procedurename Required. Name of the event; follows standard variable naming conventions.

The arglist argument has the follow ing syntax and parts:

[ByVal | ByRef] varname[()] [As type]

Part Descrip tion

ByVal Optional. Indicates that the argument is passed by value.

ByRef Optional. Indicates that the argument is passed by reference. ByRef is the default in Visual Basic.

varname Required. Name of the variable representing the argument being passed to the procedure; follows standard
variable naming conventions.

type Optional. Data type of the argument passed to the procedure; may be Byte, Boolean, Integer, Long, Currency,
Single, Double, Decimal (not currently supported), Date, String (variable length only), Object, Variant, a user-
defined type, or an object type.

Remarks

Once the event has been declared, use the RaiseEvent statement to fire the event. A syntax error occurs if an Event

declaration appears in a standard module. An event can't be declared to return a value. A typical event might be declared

https://msdn.microsoft.com/en-us/library/aa243364(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229625(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa243365(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa172189.aspx
https://msdn.microsoft.com/en-us/library/aa171680.aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa220031.aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/library/aa210393.aspx
https://msdn.microsoft.com/en-us/library/aa212174.aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa210841.aspx
https://msdn.microsoft.com/en-us/library/aa212271.aspx
https://msdn.microsoft.com/en-us/library/aa171802.aspx
https://msdn.microsoft.com/en-us/library/aa212239.aspx
https://msdn.microsoft.com/en-us/library/aa243364(v=vs.60).aspx

3. 1.2018 Event Statement

and raised as shown in the follow ing fragments:

' D e c la re an even t a t module le v e l o f a c la s s module

Event LogonCompleted (UserName as S t r in g)

Sub
R a iseEven t LogonCom p le ted ("An to ineJan ")

End Sub

N o te You can declare event arguments just as you do arguments of procedures, with the follow ing exceptions: events

cannot have named arguments, O p tiona l arguments, or Param Array arguments. Events do not have return values.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa243364(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa243364(v=vs.60).aspx

3. 1.2018 Event Statement Example

Visual Basic for Applications Reference

Event Statement Example
The follow ing example uses events to count off seconds during a demonstration of the fastest 100 meter race. The code

illustrates all o f the event-related methods, properties, and statements, including the Event statement.

The class that raises an event is the event source, and the classes that implement the event are the sinks. An event source can

have multiple sinks for the events it generates. When the class raises the event, that event is fired on every class that has

elected to sink events for that instance of the object.

The example also uses a form (Form1) with a button (Command1), a label (Label1), and two text boxes (Text1 and Text2).

When you click the button, the first text box displays "From Now" and the second starts to count seconds. When the full time

(9.84 seconds) has elapsed, the first text box displays "Until Now" and the second displays "9.84"

The code for Form1 specifies the initial and terminal states of the form. It also contains the code executed when events are

raised.

O p tion E x p l i c i t

P r iv a te W ithEven ts mText As T im e rS ta te

P r iv a te Sub Command1_Click()
T e x t1 .T e x t = "From Now"

T e x t1 .R e fre sh
T e x t2 .T e x t = "0"
T e x t2 .R e fre sh

C a l l m Text.T im erTask(9 .84)
End Sub

P r iv a te Sub Form_Load()
Command1.Caption = " C l i c k to S t a r t T im er"
T e x t1 .T e x t = ""
T e x t2 .T e x t = ""
L a b e l1 .C a p t io n = "The f a s t e s t 100 meter run to o k t h i s lo n g : "
Set mText = New T im e rS ta te
End Sub

P r iv a te Sub m Text_ChangeText()
T e x t1 .T e x t = " U n t i l Now"
T e x t2 .T e x t = "9 .84 "

End Sub

P r iv a te Sub m Text_UpdateT im e(ByVal dblJump As Double)
T e x t2 .T e x t = S tr(F o rm a t(db lJum p , "0 "))
DoEvents

End Sub

The remaining code is in a class module named TimerState. The Event statements declare the procedures initiated when

events are raised.

O p tion E x p l i c i t
P u b l ic Event UpdateT im e(ByVa l dblJump As Doub le)
P u b l ic Event ChangeText()

P u b l ic Sub T im erTask(B yVa l D u ra tio n As Double)

https://msdn.microsoft.com/en-us/library/aa243365(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa243365(v=vs.60).aspx

3. 1.2018 Event Statement Example

Dim d b lS t a r t As Double
Dim db lSecond As Double
Dim d b lS o Fa r As Double
d b lS t a r t = T im er
d b lS o Fa r = d b lS t a r t

Do W h ile T im er < d b lS t a r t + D u ra tio n
I f T im er - d b lS o Fa r >= 1 Then

d b lS o Fa r = d b lS o Fa r + 1
R a iseEven t UpdateT im e(T im er - d b lS t a r t)

End I f
Loop

R a iseEven t ChangeText

End Sub

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa243365(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa243365(v=vs.60).aspx

3. 1.2018 Exit Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Exit Statement
See Also Example Specifics

Exits a block of DoLoop, For...Next, Function, Sub, or P rope rty code.

Syntax

Exit Do

Exit For

Exit Function

Exit P rope rty

Exit Sub

The Exit statement syntax has these forms:

Statem ent Descrip tion

Exit Do Provides a way to exit a Do...Loop statement. It can be used only inside a Do...Loop statement. Ex it Do
transfers control to the statement following the Loop statement. When used within nested Do...Loop
statements, Exit Do transfers control to the loop that is one nested level above the loop where Exit Do
occurs.

Exit For Provides a way to exit a For loop. It can be used only in a For...Next or For Each...Next loop. Exit For
transfers control to the statement following the N ext statement. When used within nested For loops, Exit
For transfers control to the loop that is one nested level above the loop where Exit For occurs.

Exit
Function

Immediately exits the Function procedure in which it appears. Execution continues with the statement
follow ing the statement that called the Function.

Exit
P rope rty

Immediately exits the P rope rty procedure in which it appears. Execution continues with the statement
follow ing the statement that called the P rope rty procedure.

Exit Sub Immediately exits the Sub procedure in which it appears. Execution continues with the statement following
the statement that called the Sub procedure.

Remarks

Do not confuse Exit statements with End statements. Exit does not define the end of a structure.

https://msdn.microsoft.com/en-us/library/aa243366(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229626(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa243367(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212247.aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa243366(v=vs.60).aspx

3. 1.2018 Exit Statement Example

https://msdn.microsoft.com/en-us/Nbrary/aa243367(v=vs.60).aspx 1/1

Visual Basic for Applications Reference

Exit Statement Example
This example uses the Exit statement to exit a For...Next loop, a Do...Loop, and a Sub procedure.

Sub Ex itS tatem entD em o()
Dim I , MyNum

Do ' Set up i n f i n i t e lo o p .
For I = 1 To 1000 ' Loop 1000 t im e s .

MyNum = In t(R nd * 1000) ' Genera te random numbers.
S e le c t Case MyNum ' E va lu a te random number.

Case 7: E x it Fo r ' I f 7, e x i t F o r . . .N e x t .
Case 29: E x it Do ' I f 29, e x i t D o .. .L o o p .
Case 54: E x it Sub ' I f 54, e x i t Sub p ro cedu re .

End S e le c t
Next I

Loop
End Sub

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243367(v=vs.60).aspx

3. 1.2018 FileCopy Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

FileCopy Statement
See Also Example Specifics

Copies a file.

Syntax

F ileCopy source, destination

The F ileCopy statement syntax has these named arguments:

Part Descrip tion

source Required. String expression that specifies the name of the file to be copied. The source may include
directory or folder, and drive.

destination Required. String expression that specifies the target file name. The destination may include directory or
folder, and drive.

Remarks

If you try to use the F ileCopy statement on a currently open file, an error occurs.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243368(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229627(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa243369(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243368(v=vs.60).aspx

3. 1.2018 FileCopy Statement Example

Visual Basic for Applications Reference

FileCopy Statement Example
This example uses the F ileCopy statement to copy one file to another. For purposes of this example, assume that SRCFILE is

a file containing some data.

Dim S o u rc e F ile , D e s t in a t io n F i le
S o u rc e F ile = "SRCFILE" ' D e fin e sou rce f i l e name.
D e s t in a t io n F i le = "DESTFILE" ' D e fin e t a rg e t f i l e name.
F ile C o p y S o u rc e F ile , D e s t in a t io n F i le ' Copy sou rce to t a r g e t .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243369(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa243369(v=vs.60).aspx

3. 1.2018 For Each...Next Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

For Each...Next Statement
See Also Example Specifics

Repeats a group of statements for each element in an array or collection.

Syntax

For Each element In group
[statements]
[Exit For]

[statements]

N ext [element]

The For...Each...Next statement syntax has these parts:

Part Descrip tion

element Required. Variable used to iterate through the elements of the collection or array. For collections, element
can only be a Variant variable, a generic object variable, or any specific object variable. For arrays, element
can only be a Va rian t variable.

group Required. Name of an object collection or array (except an array of user-defined types).

statements Optional. One or more statements that are executed on each item in group.

Remarks

The For...Each block is entered if there is at least one element in group. Once the loop has been entered, all the statements

in the loop are executed for the first element in group. If there are more elements in group, the statements in the loop

continue to execute for each element. When there are no more elements in group, the loop is exited and execution continues

with the statement follow ing the N ext statement.

Any number of Ex it For statements may be placed anywhere in the loop as an alternative way to exit. Ex it For is often used

after evaluating some condition, for example IfThen, and transfers control to the statement immediately follow ing Next.

You can nest For...Each...Next loops by placing one For...Each...Next loop within another. However, each loop element
must be unique.

N o te If you om it element in a N ext statement, execution continues as if element is included. If a N ext statement is

encountered before its corresponding For statement, an error occurs.

https://msdn.microsoft.com/en-us/Nbrary/aa243371(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229629(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa263662.aspx
https://msdn.microsoft.com/en-us/library/aa212247.aspx
https://msdn.microsoft.com/en-us/library/aa219965.aspx
https://msdn.microsoft.com/en-us/library/aa210331.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243371(v=vs.60).aspx

3. 1.2018 For Each...Next Statement

You can't use the For...Each...Next statement with an array of user-defined types because a Va rian t can't contain a user-

defined type.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243371(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/Nbrary/aa243371(v=vs.60).aspx

3. 1.2018 For Each...Next Statement Example

For Each...Next Statement Example
This content is no longer actively maintained. It is provided as is, for anyone who may still be using these technologies, with

no warranties or claims of accuracy with regard to the most recent product version or service release.

This example loops on cells A1:D10 on Sheet1. If one of the cells has a value less than 0.001, the code replaces the value with

0 (zero).

Fo r Each c in W o rkshee ts ("Shee t1 ").R ange ("A 1 :D 10 ")
I f c .V a lu e < .001 Then

c .V a lu e = 0
End I f

Next c

This example loops on the range named "TestRange" and then displays the number of empty cells in the range.

numBlanks = 0
Fo r Each c In RangeC 'TestRange")

I f c .V a lu e = "" Then
numBlanks = numBlanks + 1

End I f
Next c
MsgBox "There are " & numBlanks & " empty c e l l s in t h i s ra n g e ."

This example closes and saves changes to all workbooks except the one thats running the example.

Fo r Each w In Workbooks
I f w.Name <> ThisWorkbook.Name Then

w .C lo se savechanges:=True
End I f

Next w

This example deletes every worksheet in the active workbook w ithout displaying the confirmation dialog box. There must be

at least one other visible sheet in the workbook.

A p p l ic a t io n .D is p la y A le r t s = F a lse
Fo r Each w In W orksheets

w .D e le te
Next w
A p p l ic a t io n .D is p la y A le r t s = True

This example creates a new worksheet and then inserts into it a list of all the names in the active workbook, including their

formulas in A1-style notation in the language of the user.

Set newSheet = A ctiveW orkbook .W orkshee ts.Add
i = 1
Fo r Each nm In ActiveW orkbook.Nam es

n e w S h e e t .C e lls (i, 1) .V a lu e = nm.NameLocal
n e w S h e e t .C e lls (i, 2) .V a lu e = & nm .R e fe rsToLoca l
i = i + 1

Next nm

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa263662.aspx 1/1

https://msdn.microsoft.com/en-us/library/aa263662.aspx

3. 1.2018 For...Next Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

For...Next Statement
See Also Example Specifics

Repeats a group of statements a specified number of times.

Syntax

For counter = start To end [Step step]
[statements]
[Exit For]

[statements]

N ext [counter]

The Fo rN ext statement syntax has these parts:

Part Descrip tion

counter Required. Numeric variable used as a loop counter. The variable can't be a Boolean or an array element.

start Required. Initial value of counter.

end Required. Final value of counter.

step Optional. Amount counter is changed each time through the loop. If not specified, step defaults to one.

statements Optional. One or more statements between For and N ext that are executed the specified number of times.

Remarks

The step argument can be either positive or negative. The value of the step argument determines loop processing as follows:

Va lue Loop executes if

Positive or 0 counter <= end

Negative counter >= end

https://msdn.microsoft.com/en-us/Nbrary/aa243370(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229628(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa263663.aspx
https://msdn.microsoft.com/en-us/library/aa212247.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa219965.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243370(v=vs.60).aspx

3. 1.2018 For...Next Statement

After all statements in the loop have executed, step is added to counter. At this point, either the statements in the loop

execute again (based on the same test that caused the loop to execute initially), or the loop is exited and execution continues

with the statement follow ing the N ext statement.

T ip Changing the value of counter while inside a loop can make it more difficult to read and debug your code.

Any number of Ex it For statements may be placed anywhere in the loop as an alternate way to exit. Exit For is often used

after evaluating of some condition, for example If...Then, and transfers control to the statement immediately follow ing Next.

You can nest For...Next loops by placing one For...Next loop within another. Give each loop a unique variable name as its

counter. The following construction is correct:

For I = 1 To 10
For J = 1 To 10

For K = 1 To 10

Next K
Next J

Next I

N o te If you om it counter in a N ext statement, execution continues as if counter is included. If a N ext statement is

encountered before its corresponding For statement, an error occurs.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243370(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/Nbrary/aa243370(v=vs.60).aspx

3. 1.2018 For...Next Statement Example

For...Next Statement Example
This content is no longer actively maintained. It is provided as is, for anyone who may still be using these technologies, with

no warranties or claims of accuracy with regard to the most recent product version or service release.

This example displays the number of columns in the selection on Sheet1. The code also tests for a multiple-area selection; if

one exists, the code loops on the areas of the selection.

W o rkshee ts (,,Shee t1 ,,) . A c t iv a t e
areaCount = S e le c t io n .A re a s .C o u n t
I f areaCount <= 1 Then

MsgBox "The s e le c t io n c o n ta in s " & _
S e le c t io n .C o lu m n s .C o u n t & " co lum ns."

E ls e
Fo r i = 1 To areaCount

MsgBox "Area " & i & " o f the s e le c t io n c o n ta in s " & _
S e le c t io n .A re a s (i) .C o lu m n s .C o u n t & " co lum ns."

Next i
End I f

This example creates a new worksheet and then inserts a list o f the active workbook's sheet names into the first column of

the worksheet.

Set newSheet = Shee ts .Add (Type := x lW orkshee t)
Fo r i = 1 To Shee ts .C oun t

n e w S h e e t .C e lls (i, 1) .V a lu e = S hee ts (i) .N am e
Next i

This example selects every other item in list box one on Sheet1.

Dim ite m s () As Boo lean
Set lb o x = W o rk sh e e ts ("S h e e t1 ") .L is tB o x e s (1)
ReDim item s(1 To lb o x .L is tC o u n t)
Fo r i = 1 To lb o x .L is tC o u n t

I f i Mod 2 = 1 Then
it e m s (i) = True

E ls e
it e m s (i) = F a ls e

End I f
Next
lb o x .M u lt iS e le c t = x lE x te n d ed
lb o x .S e le c te d = item s

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa263663.aspx 1/1

https://msdn.microsoft.com/en-us/library/aa263663.aspx

3. 1.2018 Function Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Function Statement
See Also Example Specifics

Declares the name, arguments, and code that form the body of a Function procedure.

Syntax

[Public | P riva te | Friend] [Static] Function name [(arglist)] [As type]
[statements]
[name = expression]
[Exit Function]

[statements]

[name = expression]

End Function

The Function statement syntax has these parts:

Part Descrip tion

Pub lic Optional. Indicates that the Function procedure is accessible to all other procedures in all modules. If used
in a module that contains an O p tion Private, the procedure is not available outside the project.

P rivate Optional. Indicates that the Function procedure is accessible only to other procedures in the module where
it is declared.

Friend Optional. Used only in a class m odule. Indicates that the Function procedure is visible throughout the
project, but not visible to a controller o f an instance of an object.

Static Optional. Indicates that the Function procedure's local variables are preserved between calls. The Static
attribute doesn't affect variables that are declared outside the Function, even if they are used in the
procedure.

name Required. Name of the Function; follows standard variable naming conventions.

arglist Optional. List of variables representing arguments that are passed to the Function procedure when it is
called. Multip le variables are separated by commas.

type Optional. Data type of the value returned by the Function procedure; may be Byte, Boolean, Integer, Long,
Currency, Single, Double, Decimal (not currently supported), Date, String, or (except fixed length), Object,
Variant, or any user-defined type.

statements Optional. Any group of statements to be executed within the Function procedure.

https://msdn.microsoft.com/en-us/library/aa243374(v=vs.60).aspx 1/3

https://msdn.microsoft.com/en-us/library/aa229630(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa243375(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa171680.aspx
https://msdn.microsoft.com/en-us/library/aa172189.aspx
https://msdn.microsoft.com/en-us/library/aa210316.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa220031.aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/library/aa210393.aspx
https://msdn.microsoft.com/en-us/library/aa212174.aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa210841.aspx
https://msdn.microsoft.com/en-us/library/aa212271.aspx
https://msdn.microsoft.com/en-us/library/aa171802.aspx
https://msdn.microsoft.com/en-us/library/aa243374(v=vs.60).aspx

3. 1.2018 Function Statement

expression Optional. Return value of the Function.

The arglist argument has the follow ing syntax and parts:

[Optional] [ByVal | ByRef] [ParamArray] varname[()] [As type] [= defaultvalue]

Part Descrip tion

O p tiona l Optional. Indicates that an argument is not required. If used, all subsequent arguments in arglist must also
be optional and declared using the O p tiona l keyword. O p tiona l can't be used for any argument if
Param Array is used.

ByVal Optional. Indicates that the argument is passed by value.

ByRef Optional. Indicates that the argument is passed by reference. ByRef is the default in Visual Basic.

Param Array Optional. Used only as the last argument in arglist to indicate that the final argument is an O p tiona l array
of Va rian t elements. The Param Array keyword allows you to provide an arbitrary number of arguments.
It may not be used with ByVal, ByRef, or O ptional.

varname Required. Name of the variable representing the argument; follows standard variable naming conventions.

type Optional. Data type of the argument passed to the procedure; may be Byte, Boolean, Integer, Long,
Currency, Single, Double, Decim al (not currently supported) Date, S tring (variable length only), Object,
Variant, or a specific object type. If the parameter is not O ptiona l, a user-defined type may also be
specified.

defaultvalue Optional. Any constant or constant expression. Valid for O p tiona l parameters only. If the type is an
Object, an explicit default value can only be Noth ing .

Remarks

If not explicitly specified using Public, Private, or Friend, Function procedures are public by default. If S tatic isn't used, the

value of local variables is not preserved between calls. The Friend keyword can only be used in class modules. However,

Friend procedures can be accessed by procedures in any module of a project. A Friend procedure does't appear in the type

library of its parent class, nor can a Friend procedure be late bound.

Caution Function procedures can be recursive; that is, they can call themselves to perform a given task. However, recursion

can lead to stack overflow. The S tatic keyword usually isn't used with recursive Function procedures.

All executable code must be in procedures. You can't define a Function procedure inside another Function, Sub, or

P rope rty procedure.

The Exit Function statement causes an immediate exit from a Function procedure. Program execution continues with the

statement follow ing the statement that called the Function procedure. Any number of Exit Function statements can appear

anywhere in a Function procedure.

Like a Sub procedure, a Function procedure is a separate procedure that can take arguments, perform a series of

statements, and change the values of its arguments. However, unlike a Sub procedure, you can use a Function procedure on

the right side of an expression in the same way you use any intrinsic function, such as Sqr, Cos, or Chr, when you want to use

the value returned by the function.

You call a Function procedure using the function name, followed by the argument list in parentheses, in an expression. See

the Call statement for specific information on how to call Function procedures.

https://msdn.microsoft.com/en-us/Nbrary/aa243374(v=vs.60).aspx 2/3

https://msdn.microsoft.com/en-us/library/aa210373.aspx
https://msdn.microsoft.com/en-us/library/aa212381.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243374(v=vs.60).aspx

3. 1.2018 Function Statement

To return a value from a function, assign the value to the function name. Any number of such assignments can appear

anywhere within the procedure. If no value is assigned to name, the procedure returns a default value: a numeric function

returns 0, a string function returns a zero-length string (""), and a V a rian t function returns Empty. A function that returns an

object reference returns N o th ing if no object reference is assigned to name (using Set) within the Function.

The follow ing example shows how to assign a return value to a function named B in a rySea rch . In this case, False is assigned

to the name to indicate that some value was not found.

Fun c t io n B in a ry S e a rch (. . .) As Boo lean

' V a lue not found . Retu rn a v a lu e o f F a ls e .
I f low e r > upper Then

B in a ryS ea rch = F a lse
E x it F un c tio n

End I f

End Fun c t io n

Variables used in Function procedures fall into two categories: those that are explicitly declared within the procedure and

those that are not. Variables that are explicitly declared in a procedure (using D im or the equivalent) are always local to the

procedure. Variables that are used but not explicitly declared in a procedure are also local unless they are explicitly declared

at some higher level outside the procedure.

Caution A procedure can use a variable that is not explicitly declared in the procedure, but a naming conflict can occur if

anything you defined at the module level has the same name. If your procedure refers to an undeclared variable that has the

same name as another procedure, constant, or variable, it is assumed that your procedure refers to that module-level name.

Explicitly declare variables to avoid this kind of conflict. You can use an O p tion Exp lic it statement to force explicit

declaration of variables.

Cau tion Visual Basic may rearrange arithmetic expressions to increase internal efficiency. Avoid using a Function procedure

in an arithmetic expression when the function changes the value of variables in the same expression.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa243374(v=vs.60).aspx 3/3

https://msdn.microsoft.com/en-us/library/aa211377.aspx
https://msdn.microsoft.com/en-us/library/aa171682.aspx
https://msdn.microsoft.com/en-us/library/aa243374(v=vs.60).aspx

3. 1.2018 Function Statement Example

Visual Basic for Applications Reference

Function Statement Example
This example uses the Function statement to declare the name, arguments, and code that form the body of a Function

procedure. The last example uses hard-typed, initialized O p tiona l arguments.

' The fo l lo w in g u s e r -d e f in e d fu n c t io n re tu rn s the square ro o t o f the
' argument passed to i t .
F u n c t io n C a lcu la teSqua reR oo t(N um berA rg As Doub le) As Double

I f NumberArg < 0 Then ' E v a lu a te argument.
E x it F u n c t io n ' E x it to c a l l i n g p ro cedu re .

E ls e
C a lcu la te S q u a reR o o t = Sqr(NumberArg) ' Retu rn square ro o t .

End I f
End F u n c t io n

Using the Param Array keyword enables a function to accept a variable number of arguments. In the follow ing definition,

F ir s tA r g is passed by value.

F u n c t io n Ca lcSum (ByVa l F ir s tA r g As In te g e r , Param Array O th e rA rg s ())
Dim R e tu rnVa lue
' I f the fu n c t io n i s in voked as fo l lo w s :
R e tu rnVa lue = CalcSum (4, 3 ,2 ,1)
' L o ca l v a r ia b le s a re a ss ig n ed the fo l lo w in g v a lu e s : F i r s tA r g = 4,
' O th e rA rg s(1) = 3, O th e rA rg s (2) = 2, and so on, assum ing d e fa u lt
' low e r bound f o r a r ra y s = 1.

O p tiona l arguments can have default values and types other than Variant.

' I f a f u n c t io n 's arguments a re d e f in e d as fo l lo w s :
F u n c t io n MyFunc(MyStr As S t r in g , O p t io n a l MyArg1 As _ In te g e r = 5, O p t io n a l MyArg2 = " D o l ly ")
Dim R e tV a l
' The fu n c t io n can be in voked as fo l lo w s :
R e tV a l = M y Fu n c ("H e llo " , 2, "W orld ") ' A l l 3 arguments s u p p lie d .
R e tV a l = M yFun c("T es t" , , 5) ' Second argument o m itte d .
' Arguments one and th re e u s in g named-arguments.
R e tV a l = M yFunc(M yS tr:= "H e llo " , MyArg1:=7)

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa243375(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa243375(v=vs.60).aspx

3. 1.2018 Get Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Get Statement
See Also Example Specifics

Reads data from an open disk file into a variable.

Syntax

Get [#]filenumber, [recnumber], varname

The Get statement syntax has these parts:

Part Descrip tion

filenumber Required. Any valid file number.

recnumber Optional. Va rian t (Long). Record number (Random mode files) or byte number (B inary mode files) at
which reading begins.

varname Required. Valid variable name into which data is read.

Remarks

Data read with Get is usually written to a file with Put.

The first record or byte in a file is at position 1, the second record or byte is at position 2, and so on. If you om it recnumber,
the next record or byte follow ing the last Get or Put statement (or pointed to by the last Seek function) is read. You must

include delim iting commas, for example:

Get # 4 j , F i le B u f f e r

For files opened in Random mode, the follow ing rules apply:

• If the length of the data being read is less than the length specified in the Len clause of the Open statement, Get
reads subsequent records on record-length boundaries. The space between the end of one record and the beginning
of the next record is padded with the existing contents of the file buffer. Because the amount of padding data can't be
determined with any certainty, it is generally a good idea to have the record length match the length of the data
being read.

• If the variable being read into is a variable-length string, Get reads a 2-byte descriptor containing the string length
and then reads the data that goes into the variable. Therefore, the record length specified by the Len clause in the
Open statement must be at least 2 bytes greater than the actual length of the string.

https://msdn.microsoft.com/en-us/library/aa243376(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229631(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa243377(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa212247.aspx
https://msdn.microsoft.com/en-us/library/aa243376(v=vs.60).aspx

3. 1.2018 Get Statement

• If the variable being read into is a Variant o f numeric type, Get reads 2 bytes identifying the VarType of the Va rian t
and then the data that goes into the variable. For example, when reading a Va rian t o f VarType 3, Get reads 6 bytes: 2
bytes identifying the Va rian t as VarType 3 (Long) and 4 bytes containing the Long data. The record length specified
by the Len clause in the Open statement must be at least 2 bytes greater than the actual number of bytes required to
store the variable.
N o te You can use the Get statement to read a Va rian t array from disk, but you can't use Get to read a scalar

Va rian t containing an array. You also can't use Get to read objects from disk.

• If the variable being read into is a V a rian t o f VarType 8 (String), Get reads 2 bytes identifying the VarType, 2 bytes
indicating the length of the string, and then reads the string data. The record length specified by the Len clause in the
Open statement must be at least 4 bytes greater than the actual length o f the string.

• If the variable being read into is a dynamic array, Get reads a descriptor whose length equals 2 plus 8 times the
number of dimensions, that is, 2 + 8 * NumberOfDimensions. The record length specified by the Len clause in the
Open statement must be greater than or equal to the sum of all the bytes required to read the array data and the
array descriptor. For example, the follow ing array declaration requires 118 bytes when the array is written to disk.

Dim M yA rray(1 To 5 ,1 To 10) As In te g e r

The 118 bytes are distributed as follows: 18 bytes for the descriptor (2 + 8 * 2), and 100 bytes for the data (5 * 10 * 2).

• If the variable being read into is a fixed-size array, Get reads only the data. No descriptor is read.

• If the variable being read into is any other type of variable (not a variable-length string or a Variant), Get reads only
the variable data. The record length specified by the Len clause in the Open statement must be greater than or equal
to the length of the data being read.

• Get reads elements of user-defined types as if each were being read individually, except that there is no padding
between elements. On disk, a dynamic array in a user-defined type (written with Put) is prefixed by a descriptor whose
length equals 2 plus 8 times the number of dimensions, that is, 2 + 8 * NumberOfDimensions. The record length
specified by the Len clause in the Open statement must be greater than or equal to the sum of all the bytes required
to read the individual elements, including any arrays and their descriptors.

For files opened in B inary mode, all o f the Random rules apply, except:

• The Len clause in the Open statement has no effect. Get reads all variables from disk contiguously; that is, with no
padding between records.

• For any array other than an array in a user-defined type, Get reads only the data. No descriptor is read.

• Get reads variable-length strings that aren't elements of user-defined types w ithout expecting the 2-byte length
descriptor. The number of bytes read equals the number of characters already in the string. For example, the follow ing
statements read 10 bytes from file number 1:

V a rS t r in g = S t r in g (1 0 , " ")
Get # 1 , ,V a rS t r in g

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa243376(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa219965.aspx
https://msdn.microsoft.com/en-us/library/aa243376(v=vs.60).aspx

3. 1.2018 Get Statement Example

Visual Basic for Applications Reference

Get Statement Example
This example uses the Get statement to read data from a file into a variable. This example assumes that TESTFILE is a file

containing five records of the user-defined type Record.

Type Record ' D e fin e u s e r -d e f in e d ty p e .
ID As In te g e r
Name As S t r in g * 20

End Type

Dim MyRecord As Record , P o s it io n ' D e c la re v a r ia b le s .
' Open sample f i l e f o r random a c ce ss .
Open "TESTFILE" For Random As #1 Len = Len(MyRecord)
' Read th e sample f i l e u s in g th e Get s ta tem en t.
P o s it io n = 3 ' D e fin e re co rd number.
Get #1, P o s it io n , MyRecord ' Read t h i r d re co rd .
C lo se #1 ' C lo se f i l e .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa243377(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa243377(v=vs.60).aspx

3. 1.2018 GoSub...Retum Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

GoSub...Return Statement
See Also Example Specifics

Branches to and returns from a subroutine within a procedure.

Syntax

GoSub line

line

Return

The line argument can be any line label or line number.

Remarks

You can use GoSub and Return anywhere in a procedure, but GoSub and the corresponding Return statement must be in

the same procedure. A subroutine can contain more than one Return statement, but the first Return statement encountered

causes the flow of execution to branch back to the statement immediately follow ing the most recently executed GoSub

statement.

N o te You can't enter or exit Sub procedures with GoSub...Return.

T ip Creating separate procedures that you can call may provide a more structured alternative to using GoSub...Return.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243378(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229632(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa243379(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa212247.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243378(v=vs.60).aspx

3. 1.2018 GoSub...Retum Statement Example

Visual Basic for Applications Reference

GoSub...Return Statement Example
This example uses GoSub to call a subroutine within a Sub procedure. The Return statement causes the execution to resume

at the statement immediately follow ing the GoSub statement. The Exit Sub statement is used to prevent control from

accidentally flowing into the subroutine.

Sub GosubDemo()
Dim Num
' S o l i c i t a number from th e u se r .

Num = In p u tB o x ("E n te r a p o s i t iv e number to be d iv id e d by 2 .")
' O n ly use ro u t in e i f u se r e n te rs a p o s i t iv e number.

I f Num > 0 Then GoSub M yRoutine
D e b u g .P r in t Num
E x it Sub ' Use E x it to p reven t an e r r o r .

M yRoutine:
Num = Num/2 ' Perfo rm th e d iv i s io n .
Retu rn ' Return c o n t r o l to s ta tem en t.

End Sub ' f o l lo w in g th e GoSub s ta tem en t.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243379(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa243379(v=vs.60).aspx

3. 1.2018 GoTo Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

GoTo Statement
See Also Example Specifics

Branches unconditionally to a specified line within a procedure.

Syntax

GoTo line

The required line argument can be any line label or line number.

Remarks

GoTo can branch only to lines within the procedure where it appears.

N o te Too many GoTo statements can make code difficult to read and debug. Use structured control statements

(Do...Loop, For...Next, If...Then...Else, Select Case) whenever possible.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243380(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229633(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa243381(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa212247.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243380(v=vs.60).aspx

3. 1.2018 GoTo Statement Example

Visual Basic for Applications Reference

GoTo Statement Example
This example uses the GoTo statement to branch to line labels within a procedure.

Sub GotoStatementDemo()
Dim Number, M yS tr in g

Number = 1 ' I n i t i a l i z e v a r ia b le .
' E v a lu a te Number and branch to a p p ro p r ia te la b e l.
I f Number = 1 Then GoTo L ine1 E ls e GoTo L ine2

L ine1 :
M yS tr in g = "Number e q u a ls 1"
GoTo L a s tL in e ' Go to L a s tL in e .

L in e2 :
' The fo l lo w in g sta tem ent never g e ts execu ted .
M yS tr in g = "Number e q u a ls 2"

L a s tL in e :
D e b u g .P r in t M yS tr in g ' P r in t "Number e q u a ls 1" in

' the Immediate window.
End Sub

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243381(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa243381(v=vs.60).aspx

