
3. 1.2018 If...Then...Else Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

If...Then...Else Statement
See Also Example Specifics

Conditionally executes a group of statements, depending on the value of an expression.

Syntax

If condition Then [statements] [Else elsestatements]

Or, you can use the block form syntax:

If condition Then
[statements]

[ElseIf condition-n Then
[elseifstatements] . . .

[Else
[elsestatements]]

End If

The If...Then...Else statement syntax has these parts:

Part Description

condition Required. One or more of the following two types of expressions:

A numeric expression or string expression that evaluates to True or False. If condition is Null, condition
is treated as False.

An expression of the form TypeOf objectname Is objecttype. The objectname is any object reference
and objecttype is any valid object type. The expression is True if objectname is of the object type
specified by objecttype; otherwise it is False.

statements Optional in block form; required in single-line form that has no Else clause. One or more statements
separated by colons; executed if condition is True.

condition-n Optional. Same as condition.

elseifstatements Optional. One or more statements executed if associated condition-n is True.

elsestatements Optional. One or more statements executed if no previous condition or condition-n expression is True.

https://msdn.microsoft.com/en-us/Nbrary/aa243382(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229634(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa263664.aspx
https://msdn.microsoft.com/en-us/library/aa212247.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243382(v=vs.60).aspx

3. 1.2018 If...Then...Else Statement

Remarks

You can use the single-line form (first syntax) for short, simple tests. However, the block form (second syntax) provides more
structure and flexibility than the single-line form and is usually easier to read, maintain, and debug.

Note With the single-line form, it is possible to have multiple statements executed as the result of an If...Then decision. All
statements must be on the same line and separated by colons, as in the following statement:

If A > 10 Then A = A + 1 : B = B + A : C = C + B

A block form If statement must be the first statement on a line. The Else, ElseIf, and End If parts of the statement can have
only a line number or line label preceding them. The block If must end with an End If statement.

To determine whether or not a statement is a block If, examine what follows the Then keyword. If anything other than a
comment appears after Then on the same line, the statement is treated as a single-line If statement.

The Else and ElseIf clauses are both optional. You can have as many ElseIf clauses as you want in a block If, but none can
appear after an Else clause. Block If statements can be nested; that is, contained within one another.

When executing a block If (second syntax), condition is tested. If condition is True, the statements following Then are
executed. If condition is False, each ElseIf condition (if any) is evaluated in turn. When a True condition is found, the
statements immediately following the associated Then are executed. If none of the ElseIf conditions are True (or if there are
no ElseIf clauses), the statements following Else are executed. After executing the statements following Then or Else,
execution continues with the statement following End If.

Tip Select Case may be more useful when evaluating a single expression that has several possible actions. However, the
TypeOf objectname Is objecttype clause can't be used with the Select Case statement.

Note TypeOf cannot be used with hard data types such as Long, Integer, and so forth other than Object.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243382(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/Nbrary/aa243382(v=vs.60).aspx

3. 1.2018 If...Then...Else Statement Example

If...Then...Else Statement Example
This content is no longer actively maintained. It is provided as is, for anyone who may still be using these technologies, with
no warranties or claims of accuracy with regard to the most recent product version or service release.

This example loops on cells A1:D10 on Sheet1. If one of the cells has a value less than 0.001, the code replaces the value with
0 (zero).

For Each c in Worksheets(''Sheet1'').Range(''A1:D10'')
If c.Value < .001 Then

c.Value = 0
End If

Next c

This example loops on the range named "TestRange" and then displays the number of empty cells in the range.

numBlanks = 0
For Each c In Range(''TestRange'')

If c.Value = "" Then
numBlanks = numBlanks + 1

End If
Next c
MsgBox "There are " & numBlanks & " empty cells in this range."

This example sets the standard font to Geneva (on the Macintosh) or Arial (in Windows).

If Application.OperatingSystem Like "♦Macintosh*'' Then
Application.StandardFont = "Geneva"

Else
Application.StandardFont = "Arial"

End If

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa263664.aspx 1/1

https://msdn.microsoft.com/en-us/library/aa263664.aspx

3. 1.2018 Implements Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Implements Statement
See Also Example Specifics

Specifies an interface or class that will be implemented in the class module in which it appears.

Syntax

Implements [InterfaceName | Class]

The required InterfaceName or Class is the name of an interface or class in a type library whose methods will be implemented
by the corresponding methods in the Visual Basic class.

Remarks

An interface is a collection of prototypes representing the members (methods and properties) the interface encapsulates;
that is, it contains only the declarations for the member procedures. A class provides an implementation of all of the
methods and properties of one or more interfaces. Classes provide the code used when each function is called by a
controller of the class. All classes implement at least one interface, which is considered the default interface of the class. In
Visual Basic, any member that isn't explicitly a member of an implemented interface is implicitly a member of the default
interface.

When a Visual Basic class implements an interface, the Visual Basic class provides its own versions of all the Public
procedures specified in the type library of the Interface. In addition to providing a mapping between the interface prototypes
and your procedures, the Implements statement causes the class to accept COM QueryInterface calls for the specified
interface ID.

Note Visual Basic does not implement derived classes or interfaces.

When you implement an interface or class, you must include all the Public procedures involved. A missing member in an
implementation of an interface or class causes an error. If you don't place code in one of the procedures in a class you are
implementing, you can raise the appropriate error (Const E_NOTIMPL = &H80004001) so a user of the implementation
understands that a member is not implemented.

The Implements statement can't appear in a standard module.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa243384(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229635(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa243385(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa210316.aspx
https://msdn.microsoft.com/en-us/library/aa220050.aspx
https://msdn.microsoft.com/en-us/library/aa212381.aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa212239.aspx
https://msdn.microsoft.com/en-us/library/aa243384(v=vs.60).aspx

3. 1.2018 Implements Statement Example

Visual Basic for Applications Reference

Implements Statement Example
The following example shows how to use the Implements statement to make a set of declarations available to multiple
classes. By sharing the declarations through the Implements statement, neither class has to make any declarations itself.

Assume there are two forms. The Selector form has two buttons, Customer Data and Supplier Data. To enter name and
address information for a customer or a supplier, the user clicks the Customer button or the Supplier button on the Selector
form, and then enters the name and address using the Data Entry form. The Data Entry form has two text fields, Name and
Address.

The following code for the shared declarations is in a class called PersonalData:

Public Name As String
Public Address As String

The code supporting the customer data is in a class module called Customer:

Implements PersonalData
Private Property Get PersonalData_Address() As String
PersonalData_Address = "CustomerAddress"
End Property

Private Property Let PersonalData_Address(ByVal RHS As String)

End Property

Private Property Let PersonalData_Name(ByVal RHS As String)

End Property

Private Property Get PersonalData_Name() As String
PersonalData_Name = "CustomerName"
End Property

The code supporting the supplier data is in a class module called Supplier:

Implements PersonalData

Private Property Get PersonalData_Address() As String
PersonalData_Address = "SupplierAddress"
End Property

Private Property Let PersonalData_Address(ByVal RHS As String)

End Property

Private Property Let PersonalData_Name(ByVal RHS As String)

End Property

Private Property Get PersonalData_Name() As String
PersonalData_Name = "SupplierName"
End Property

https://msdn.microsoft.com/en-us/library/aa243385(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa243385(v=vs.60).aspx

3. 1.2018 Implements Statement Example

The following code supports the Selector form:

Private cust As New Customer
Private sup As New Supplier

Private Sub Command1_Click()
Dim frm2 As New Form2

Set frm2.PD = cust
frm2.Show 1

End Sub

Private Sub Command2_Click()
Dim frm2 As New Form2

Set frm2.PD = sup
frm2.Show 1

End Sub

The following code supports the Data Entry form:

Private m_pd As PersonalData
Private Sub Form_Load()

With m_pd
Text1 = .Name
Text2 = .Address

End With
End Sub
Public Property Set PD(Data As PersonalData)

Set m_pd = Data
End Property

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243385(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/Nbrary/aa243385(v=vs.60).aspx

3. 1.2018 Input # Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Input # Statement
See Also Example Specifics

Reads data from an open sequential file and assigns the data to variables.

Syntax

Input #filenumber, varlist

The Input # statement syntax has these parts:

Part Description

filenumber Required. Any valid file number.

varlist Required. Comma-delimited list of variables that are assigned values read from the file can't be an array or
object variable. However, variables that describe an element of an array or user-defined type may be used.

Remarks

Data read with Input # is usually written to a file with Write #. Use this statement only with files opened in Input or Binary
mode.

When read, standard string or numeric data is assigned to variables without modification. The following table illustrates how
other input data is treated:

Data Value assigned to variable

Delimiting comma or blank line Empty

#NULL# Null

#TRUE# or #FALSE# True or False

#yyyy-mm-dd hh:mm:ss# The date and/or time represented by the expression

#ERROR errornumber# errornumber (variable is a Variant tagged as an error)

Double quotation marks (" ") within input data are ignored.

https://msdn.microsoft.com/en-us/Nbrary/aa243386(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229636(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa243387(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa219965.aspx
https://msdn.microsoft.com/en-us/library/aa212247.aspx
https://msdn.microsoft.com/en-us/library/aa211377.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243386(v=vs.60).aspx

3. 1.2018 Input # Statement

Note You should not write strings that contain embedded quotation marks, for example, "1 ,2 ""X " for use with the Input #
statement: Input # parses this string as two complete and separate strings.

Data items in a file must appear in the same order as the variables in varlist and match variables of the same data type. If a
variable is numeric and the data is not numeric, a value of zero is assigned to the variable.

If you reach the end of the file while you are inputting a data item, the input is terminated and an error occurs.

Note To be able to correctly read data from a file into variables using Input #, use the Write # statement instead of the
Print # statement to write the data to the files. Using Write # ensures each separate data field is properly delimited.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa243386(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa243386(v=vs.60).aspx

3. 1.2018 Input # Statement Example

Visual Basic for Applications Reference

Input # Statement Example
This example uses the Input # statement to read data from a file into two variables. This example assumes that TESTFILE is
a file with a few lines of data written to it using the Write # statement; that is, each line contains a string in quotations and a
number separated by a comma, for example, ("Hello", 234).

Dim M yString, MyNumber
Open "TESTFILE" For Input As #1 ' Open f i l e fo r in p u t.
Do While Not EOF(1) ' Loop u n t i l end o f f i l e .

Input #1, M yString, MyNumber ' Read data in to two v a r ia b le s .
Debug.Print M yString, MyNumber ' P r in t data to the Immediate window.

Loop
Close #1 ' Close f i l e .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa243387(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa243387(v=vs.60).aspx

3. 1.2018 Kill Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Kill Statement
See Also Example Specifics

Deletes files from a disk.

Syntax

Kill pathname

The required pathname argument is a string expression that specifies one or more file names to be deleted. The pathname
may include the directory or folder, and the drive.

Remarks

In Microsoft Windows, Kill supports the use of multiple-character (*) and single-character (?) wildcards to specify multiple
files

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243388(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa266252(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa243389(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa243388(v=vs.60).aspx

3. 1.2018 Kill Statement Example

Visual Basic for Applications Reference

Kill Statement Example
This example uses the Kill statement to delete a file from a disk.

' Assume TESTFILE is a file containing some data.
Kill "TestFile" ' Delete file.

' Delete all *.TXT files in current directory.
Kill "*.TXT"

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa243389(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa243389(v=vs.60).aspx

3. 1.2018 Let Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Let Statement
See Also Example Specifics

Assigns the value of an expression to a variable or property.

Syntax

[Let] varname = expression

The Let statement syntax has these parts:

Part Description

Let Optional. Explicit use of the Let keyword is a matter of style, but it is usually omitted.

varname Required. Name of the variable or property; follows standard variable naming conventions.

expression Required. Value assigned to the variable or property.

Remarks

A value expression can be assigned to a variable or property only if it is of a data type that is compatible with the variable.
You can't assign string expressions to numeric variables, and you can't assign numeric expressions to string variables. If you
do, an error occurs at compile time.

Variant variables can be assigned either string or numeric expressions. However, the reverse is not always true. Any Variant
except a Null can be assigned to a string variable, but only a Variant whose value can be interpreted as a number can be
assigned to a numeric variable. Use the IsNumeric function to determine if the Variant can be converted to a number.

Caution Assigning an expression of one numeric type to a variable of a different numeric type coerces the value of the
expression into the numeric type of the resulting variable.

Let statements can be used to assign one record variable to another only when both variables are of the same user-defined
type. Use the LSet statement to assign record variables of different user-defined types. Use the Set statement to assign
object references to variables.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa243390(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229637(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa243391(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa172196.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/library/aa210361.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/library/aa243390(v=vs.60).aspx

3. 1.2018 Let Statement Example

Visual Basic for Applications Reference

Let Statement Example
This example assigns the values of expressions to variables using the explicit Let statement.

Dim MyStr, MyInt
' The following variable assignments use the Let statement.
Let MyStr = "Hello World"
Let MyInt = 5

The following are the same assignments without the Let statement.

Dim MyStr, MyInt
MyStr = "Hello World
MyInt = 5

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa243391(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa243391(v=vs.60).aspx

3. 1.2018 Line Input # Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Line Input # Statement
See Also Example Specifics

Reads a single line from an open sequential file and assigns it to a String variable.

Syntax

Line Input #filenumber, varname

The Line Input # statement syntax has these parts:

Part Description

filenumber Required. Any valid file number.

varname Required. Valid Variant or String variable name.

Remarks

Data read with Line Input # is usually written from a file with Print #.

The Line Input # statement reads from a file one character at a time until it encounters a carriage return (Chr(13)) or
carriage returnlinefeed (Chr(13) + Chr(10)) sequence. Carriage returnlinefeed sequences are skipped rather than appended
to the character string.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa243392(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229638(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266159(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212271.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa243392(v=vs.60).aspx

3. 1.2018 Line Input # Statement Example

Visual Basic for Applications Reference

Line Input # Statement Example
This example uses the Line Input # statement to read a line from a sequential file and assign it to a variable. This example
assumes that TESTFILE is a text file with a few lines of sample data.

Dim TextL ine
Open "TESTFILE" For Input As #1 ' Open f i l e .
Do While Not EOF(1) ' Loop u n t i l end o f f i l e .

Line Input #1, TextL ine ' Read lin e in to v a r ia b le .
Debug.Print TextL ine ' P r in t to the Immediate window.

Loop
Close #1 ' Close f i l e .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266159(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa266159(v=vs.60).aspx

3. 1.2018 Load Statement

This documentation is archived and is not being maintained.

Visual Basic Reference
Visual Studio 6.0

Load Statement
See Also Example

Loads a form or control into memory.

Syntax

Load object

The object placeholder is the name of a Form object, MDIForm object, or control array element to load.

Remarks

You don't need to use the Load statement with forms unless you want to load a form without displaying it. Any reference to
a form (except in a Set or If...TypeOf statement) automatically loads it if it's not already loaded. For example, the Show
method loads a form before displaying it. Once the form is loaded, its properties and controls can be altered by the
application, whether or not the form is actually visible. Under some circumstances, you may want to load all your forms
during initialization and display them later as they're needed.

When Visual Basic loads a Form object, it sets form properties to their initial values and then performs the Load event
procedure. When an application starts, Visual Basic automatically loads and displays the application's startup form.

If you load a Form whose MDIChild property is set to True (in other words, the child form) before loading an MDIForm, the
MDIForm is automatically loaded before the child form. MDI child forms cannot be hidden, and thus are immediately visible
after the Form_Load event procedure ends.

The standard dialog boxes produced by Visual Basic functions such as MsgBox and InputBox do not need to be loaded,
shown, or unloaded, but can simply be invoked directly.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa445825(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229712(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa445826(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa445825(v=vs.60).aspx

3. 1.2018 Load Statement Example

Visual Basic Reference

Load Statement Example
This example uses the Load statement to load a Form object. To try this example, paste the code into the Declarations
section of a Form object, and then run the example and click the Form object.

Private Sub Form_Click ()
Dim Answer, Msg as String ' Declare variable.
Unload Form1 ' Unload form.
Msg = "Form1 has been unloaded. Choose Yes to load and "
Msg = Msg & "display the form. Choose No to load the form "
Msg = Msg & "and leave it invisible."
Answer = MsgBox(Msg, vbYesNo) ' Get user response.
If Answer = vbYes Then ' Evaluate answer.

Show ' If Yes, show form.
Else

Load Form1 ' If No, just load it.
Msg = "Form1 is now loaded. Choose OK to display it."
MsgBox Msg ' Display message.
Show ' Show form.

End If
End Sub

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa445826(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa445826(v=vs.60).aspx

3. 1.2018 Lock, Unlock Statements

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Lock, Unlock Statements
See Also Example Specifics

Controls access by other processes to all or part of a file opened using the Open statement.

Syntax

Lock [#]filenumber[, recordrange]

Unlock [#]filenumber[, recordrange]

The Lock and Unlock statement syntax has these parts:

Part Description

filenumber Required. Any valid file number.

recordrange Optional. The range of records to lock or unlock.

Settings

The recordrange argument settings are:

recnumber | [start] To end

Setting Description

recnumber Record number (Random mode files) or byte number (Binary mode files) at which locking or unlocking
begins.

start Number of the first record or byte to lock or unlock.

end Number of the last record or byte to lock or unlock.

Remarks

The Lock and Unlock statements are used in environments where several processes might need access to the same file.

Lock and Unlock statements are always used in pairs. The arguments to Lock and Unlock must match exactly.
https://msdn.microsoft.com/en-us/Nbrary/aa266161(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa266177(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266162(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa266161(v=vs.60).aspx

3. 1.2018 Lock, Unlock Statements

The first record or byte in a file is at position 1, the second record or byte is at position 2, and so on. If you specify just one
record, then only that record is locked or unlocked. If you specify a range of records and omit a starting record (start), all
records from the first record to the end of the range (end) are locked or unlocked. Using Lock without recnumber locks the
entire file; using Unlock without recnumber unlocks the entire file.

If the file has been opened for sequential input or output, Lock and Unlock affect the entire file, regardless of the range
specified by start and end.

Caution Be sure to remove all locks with an Unlock statement before closing a file or quitting your program. Failure to
remove locks produces unpredictable results.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266161(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/Nbrary/aa266161(v=vs.60).aspx

3. 1.2018 Lock, Unlock Statements Example

Visual Basic for Applications Reference

Lock, Unlock Statements Example
This example illustrates the use of the Lock and Unlock statements. While a record is being modified, access by other
processes to the record is denied. This example assumes that TESTFILE is a file containing five records of the user-defined
type Record.

Type Record ' Define user-defined type .
ID As In teger
Name As S trin g * 20

End Type

Dim MyRecord As Record, RecordNumber ' Declare v a r ia b le s .
' Open sample f i l e fo r random access.
Open "TESTFILE" For Random Shared As #1 Len = Len(MyRecord)
RecordNumber = 4 ' Define record number.
Lock #1, RecordNumber ' Lock record .
Get #1, RecordNumber, MyRecord ' Read record .
MyRecord.ID = 234 ' Modify record .
MyRecord.Name = "John Smith"
Put #1, RecordNumber, MyRecord ' Write modified record .
Unlock #1, RecordNumber ' Unlock current record .
Close #1 ' Close f i l e .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266162(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa266162(v=vs.60).aspx

3. 1.2018 LSet Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

LSet Statement
See Also Example Specifics

Left aligns a string within a string variable, or copies a variable of one user-defined type to another variable of a different
user-defined type.

Syntax

LSet stringvar = string

LSet varnamel = varname2

The LSet statement syntax has these parts:

Part Description

stringvar Required. Name of string variable.

string Required. String expression to be left-aligned within stringvar.

varnamel Required. Variable name of the user-defined type being copied to.

varname2 Required. Variable name of the user-defined type being copied from.

Remarks

LSet replaces any leftover characters in stringvar with spaces.

If string is longer than stringvar, LSet places only the leftmost characters, up to the length of the stringvar, in stringvar.

Warning Using LSet to copy a variable of one user-defined type into a variable of a different user-defined type is not
recommended. Copying data of one data type into space reserved for a different data type can cause unpredictable results.

When you copy a variable from one user-defined type to another, the binary data from one variable is copied into the
memory space of the other, without regard for the data types specified for the elements.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266163(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229639(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266164(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa266163(v=vs.60).aspx

3. 1.2018 LSet Statement Example

Visual Basic for Applications Reference

LSet Statement Example
This example uses the LSet statement to left align a string within a string variable. Although LSet can also be used to copy a
variable of one user-defined type to another variable of a different, but compatible, user-defined type, this practice is not
recommended. Due to the varying implementations of data structures among platforms, such a use of LSet can't be
guaranteed to be portable.

Dim MyString
MyString = "0123456789" ' Initialize string.
Lset MyString = "<-Left" ' MyString contains "<-Left ".

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266164(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa266164(v=vs.60).aspx

3. 1.2018 Mid Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Mid Statement
See Also Example Specifics

Replaces a specified number of characters in a Variant (String) variable with characters from another string.

Syntax

Mid(stringvar, start[, length]) = string

The Mid statement syntax has these parts:

Part Description

stringvar Required. Name of string variable to modify.

start Required; Variant (Long). Character position in stringvar where the replacement of text begins.

length Optional; Variant (Long). Number of characters to replace. If omitted, all of string is used.

string Required. String expression that replaces part of stringvar.

Remarks

The number of characters replaced is always less than or equal to the number of characters in stringvar.

Note Use the MidB statement with byte data contained in a string. In the MidB statement, start specifies the byte position
within stringvar where replacement begins and length specifies the numbers of bytes to replace.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266166(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/05e63829(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266167(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa266166(v=vs.60).aspx

3. 1.2018 Mid Statement Example

Visual Basic for Applications Reference

Mid Statement Example
This example uses the Mid statement to replace a specified number of characters in a string variable with characters from
another string.

Dim MyString
MyString = "The dog jumps" ' Initialize string.
Mid(MyString, 5, 3) = "fox" ' MyString = "The fox jumps".
Mid(MyString, 5) = "cow" ' MyString = "The cow jumps".
Mid(MyString, 5) = "cow jumped over" ' MyString = "The cow jumpe".
Mid(MyString, 5, 3) = "duck" ' MyString = "The duc jumpe".

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266167(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa266167(v=vs.60).aspx

3. 1.2018 MkDir Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

MkDir Statement
See Also Example Specifics

Creates a new directory or folder.

Syntax

MkDir path

The required path argument is a string expression that identifies the directory or folder to be created. The path may include
the drive. If no drive is specified, MkDir creates the new directory or folder on the current drive.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266169(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229640(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266170(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa266169(v=vs.60).aspx

3. 1.2018 MkDir Statement Example

Visual Basic for Applications Reference

MkDir Statement Example
This example uses the MkDir statement to create a directory or folder. If the drive is not specified, the new directory or
folder is created on the current drive.

MkDir "MYDIR" ' Make new directory or folder.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266170(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa266170(v=vs.60).aspx

3. 1.2018 Name Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Name Statement
See Also Example Specifics

Renames a disk file, directory, or folder.

Syntax

Name oldpathname As newpathname

The Name statement syntax has these parts:

Part Description

oldpathname Required. String expression that specifies the existing file name and location may include directory or
folder, and drive.

newpathname Required. String expression that specifies the new file name and location may include directory or folder,
and drive. The file name specified by newpathname can't already exist.

Remarks

The Name statement renames a file and moves it to a different directory or folder, if necessary. Name can move a file across
drives, but it can only rename an existing directory or folder when both newpathname and oldpathname are located on the
same drive. Name cannot create a new file, directory, or folder.

Using Name on an open file produces an error. You must close an open file before renaming it. Name arguments cannot
include multiple-character (*) and single-character (?) wildcards.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266171(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa243388(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266172(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa266171(v=vs.60).aspx

3. 1.2018 Name Statement Example

Visual Basic for Applications Reference

Name Statement Example
This example uses the Name statement to rename a file. For purposes of this example, assume that the directories or folders
that are specified already exist.

Dim OldName, NewName
OldName = "OLDFILE": NewName = "NEWFILE" ' Define file names.
Name OldName As NewName ' Rename file.

OldName = "C:\MYDIR\OLDFILE": NewName = "C:\YOURDIR\NEWFILE"
Name OldName As NewName ' Move and rename file.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266172(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa266172(v=vs.60).aspx

3. 1.2018 On Error Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

On Error Statement
See Also Example Specifics

Enables an error-handling routine and specifies the location of the routine within a procedure; can also be used to disable an
error-handling routine.

Syntax

On Error GoTo line

On Error Resume Next

On Error GoTo 0

The On Error statement syntax can have any of the following forms:

Statement Description

On Error
GoTo line

Enables the error-handling routine that starts at line specified in the required line argument. The line
argument is any line label or line number. If a run-time error occurs, control branches to line, making the
error handler active. The specified line must be in the same procedure as the On Error statement;
otherwise, a compile-time error occurs.

On Error
Resume
Next

Specifies that when a run-time error occurs, control goes to the statement immediately following the
statement where the error occurred where execution continues. Use this form rather than On Error GoTo
when accessing objects.

On Error
GoTo 0

Disables any enabled error handler in the current procedure.

Remarks

If you don't use an On Error statement, any run-time error that occurs is fatal; that is, an error message is displayed and
execution stops.

An "enabled" error handler is one that is turned on by an On Error statement; an "active" error handler is an enabled handler
that is in the process of handling an error. If an error occurs while an error handler is active (between the occurrence of the
error and a Resume, Exit Sub, Exit Function, or Exit Property statement), the current procedure's error handler can't handle
the error. Control returns to the calling procedure. If the calling procedure has an enabled error handler, it is activated to
handle the error. If the calling procedure's error handler is also active, control passes back through previous calling
procedures until an enabled, but inactive, error handler is found. If no inactive, enabled error handler is found, the error is
fatal at the point at which it actually occurred. Each time the error handler passes control back to a calling procedure, that

https://msdn.microsoft.com/en-us/Nbrary/aa266173(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229641(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266174(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa210361.aspx
https://msdn.microsoft.com/en-us/library/aa212247.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa266173(v=vs.60).aspx

3. 1.2018 On Error Statement

procedure becomes the current procedure. Once an error is handled by an error handler in any procedure, execution
resumes in the current procedure at the point designated by the Resume statement.

Note An error-handling routine is not a Sub procedure or Function procedure. It is a section of code marked by a line label
or line number.

Error-handling routines rely on the value in the Number property of the Err object to determine the cause of the error. The
error-handling routine should test or save relevant property values in the Err object before any other error can occur or
before a procedure that might cause an error is called. The property values in the Err object reflect only the most recent
error. The error message associated with Err.Number is contained in Err.Description.

On Error Resume Next causes execution to continue with the statement immediately following the statement that caused
the run-time error, or with the statement immediately following the most recent call out of the procedure containing the On
Error Resume Next statement. This statement allows execution to continue despite a run-time error. You can place the
error-handling routine where the error would occur, rather than transferring control to another location within the
procedure. An On Error Resume Next statement becomes inactive when another procedure is called, so you should execute
an On Error Resume Next statement in each called routine if you want inline error handling within that routine.

Note The On Error Resume Next construct may be preferable to On Error GoTo when handling errors generated during
access to other objects. Checking Err after each interaction with an object removes ambiguity about which object was
accessed by the code. You can be sure which object placed the error code in Err.Number, as well as which object originally
generated the error (the object specified in Err.Source).

On Error GoTo 0 disables error handling in the current procedure. It doesn't specify line 0 as the start of the error-handling
code, even if the procedure contains a line numbered 0. Without an On Error GoTo 0 statement, an error handler is
automatically disabled when a procedure is exited.

To prevent error-handling code from running when no error has occurred, place an Exit Sub, Exit Function, or Exit Property
statement immediately before the error-handling routine, as in the following fragment:

Sub InitializeMatrix(Var1, Var2, Var3, Var4)
On Error GoTo ErrorHandler

Exit Sub
ErrorHandler:

Resume Next
End Sub

Here, the error-handling code follows the Exit Sub statement and precedes the End Sub statement to separate it from the
procedure flow. Error-handling code can be placed anywhere in a procedure.

Untrapped errors in objects are returned to the controlling application when the object is running as an executable file.
Within the development environment, untrapped errors are only returned to the controlling application if the proper options
are set. See your host application's documentation for a description of which options should be set during debugging, how
to set them, and whether the host can create classes.

If you create an object that accesses other objects, you should try to handle errors passed back from them unhandled. If you
cannot handle such errors, map the error code in Err.Number to one of your own errors, and then pass them back to the
caller of your object. You should specify your error by adding your error code to the vbObjectError constant. For example, if
your error code is 1052, assign it as follows:

Err.Number = vbObjectError + 1052

Note System errors during calls to Windows dynamic-link libraries (DLL) do not raise exceptions and cannot be trapped
with Visual Basic error trapping. When calling DLL functions, you should check each return value for success or failure
(according to the API specifications), and in the event of a failure, check the value in the Err object's LastDLLError property.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266173(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa220050.aspx
https://msdn.microsoft.com/en-us/library/aa211355.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa266173(v=vs.60).aspx

3. 1.2018 On Error Statement Example

Visual Basic for Applications Reference

On Error Statement Example
This example first uses the On Error GoTo statement to specify the location of an error-handling routine within a procedure.
In the example, an attempt to delete an open file generates error number 55. The error is handled in the error-handling
routine, and control is then returned to the statement that caused the error. The On Error GoTo 0 statement turns off error
trapping. Then the On Error Resume Next statement is used to defer error trapping so that the context for the error
generated by the next statement can be known for certain. Note that Err.Clear is used to clear the Err object's properties
after the error is handled.

Sub OnErrorStatementDemoQ
On Error GoTo ErrorHandler ' Enable error-handling routine.
Open "TESTFILE" For Output As #1 ' Open file for output.
Kill "TESTFILE" ' Attempt to delete open

' file.
On Error Goto 0 ' Turn off error trapping.
On Error Resume Next ' Defer error trapping.
ObjectRef = GetObject("MyWord.Basic") ' Try to start nonexistent

' object, then test for
'Check for likely Automation errors.

If Err.Number = 440 Or Err.Number = 432 Then
' Tell user what happened. Then clear the Err object.
Msg = "There was an error attempting to open the Automation object!
MsgBox Msg, , "Deferred Error Test"
Err.Clear ' Clear Err object fields

End If
Exit Sub ' Exit to avoid handler.
ErrorHandler: ' Error-handling routine.

Select Case Err.Number ' Evaluate error number.
Case 55 ' "File already open" error.

Close #1 ' Close open file.
Case Else

' Handle other situations here...
End Select
Resume ' Resume execution at same line

' that caused the error.
End Sub

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266174(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa266174(v=vs.60).aspx

3. 1.2018 On...GoSub, On...GoTo Statements

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

On...GoSub, On...GoTo Statements
See Also Example Specifics

Branch to one of several specified lines, depending on the value of an expression.

Syntax

On expression GoSub destinationlist

On expression GoTo destinationlist

The On...GoSub and On...GoTo statement syntax has these parts:

Part Description

expression Required. Any numeric expression that evaluates to a whole number between 0 and 255, inclusive. If
expression is any number other than a whole number, it is rounded before it is evaluated.

destinationlist Required. List of line numbers or line labels separated by commas.

Remarks

The value of expression determines which line is branched to in destinationlist. If the value of expression is less than 1 or
greater than the number of items in the list, one of the following results occurs:

If expression is Then

Equal to 0 Control drops to the statement following On...GoSub or On...GoTo.

Greater than number of items in list Control drops to the statement following On...GoSub or On...GoTo.

Negative An error occurs.

Greater than 255 An error occurs.

You can mix line numbers and line labels in the same list. You can use as many line labels and line numbers as you like with
On...GoSub and On...GoTo. However, if you use more labels or numbers than fit on a single line, you must use the line-
continuation character to continue the logical line onto the next physical line.

https://msdn.microsoft.com/en-us/Nbrary/aa266175(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229642(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266176(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/library/aa212247.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa266175(v=vs.60).aspx

3. 1.2018 On...GoSub, On...GoTo Statements

Tip Select Case provides a more structured and flexible way to perform multiple branching.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266175(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/Nbrary/aa266175(v=vs.60).aspx

3. 1.2018 On...GoSub, On...GoTo Statements Example

Visual Basic for Applications Reference

On...GoSub, On...GoTo Statements Example
This example uses the On...GoSub and On...GoTo statements to branch to subroutines and line labels, respectively.

Sub OnGosubGotoDemo()
Dim Number, MyString

Number = 2 ' I n i t i a l i z e v a r ia b le .
' Branch to Sub2.
On Number GoSub Sub1, Sub2 ' Execution resumes here a fte r

' On...GoSub.
On Number GoTo Line1 , Line2 ' Branch to Line2 .
' Execution does not resume here a fte r On...GoTo.
E x it Sub

Sub1:
MyString = "In Sub1" : Return

Sub2:
MyString = "In Sub2" : Return

Line1:
MyString = "In Line1"

Line2:
MyString = "In Line2"

End Sub

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266176(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa266176(v=vs.60).aspx

3. 1.2018 Open Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Open Statement
See Also Example Specifics

Enables input/output (I/O) to a file.

Syntax

Open pathname For mode [Access access] [lock] As [#]filenumber [Len=reclength]

The Open statement syntax has these parts:

Part Description

pathname Required. String expression that specifies a file name may include directory or folder, and drive.

mode Required. Keyword specifying the file mode: Append, Binary, Input, Output, or Random. If unspecified, the
file is opened for Random access.

access Optional. Keyword specifying the operations permitted on the open file: Read, Write, or Read Write.

lock Optional. Keyword specifying the operations restricted on the open file by other processes: Shared, Lock
Read, Lock Write, and Lock Read Write.

filenumber Required. A valid file number in the range 1 to 511, inclusive. Use the FreeFile function to obtain the next
available file number.

reclength Optional. Number less than or equal to 32,767 (bytes). For files opened for random access, this value is the
record length. For sequential files, this value is the number of characters buffered.

Remarks

You must open a file before any I/O operation can be performed on it. Open allocates a buffer for I/O to the file and
determines the mode of access to use with the buffer.

Security Note When writing to files, an application may need to create a file if the file to which it is trying to
write does not exist. To do so, it needs permission for the directory in which the file is to be created. However,
if the file specified by FileName does exist, the application only needs Write permission to the file itself.
Wherever possible, it is more secure to create the file during deployment and only grant Write permission to
that file, rather than to the entire directory. It is also more secure to write data to user directories than to the
root directory or the Program Files directory.

https://msdn.microsoft.com/en-us/Nbrary/aa266177(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229643(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266178(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa266177(v=vs.60).aspx

3. 1.2018 Open Statement

If the file specified by pathname doesn't exist, it is created when a file is opened for Append, Binary, Output, or Random
modes.

If the file is already opened by another process and the specified type of access is not allowed, the Open operation fails and
an error occurs.

The Len clause is ignored if mode is Binary.

Important In Binary, Input, and Random modes, you can open a file using a different file number without first closing the
file. In Append and Output modes, you must close a file before opening it with a different file number.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266177(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/Nbrary/aa266177(v=vs.60).aspx

3. 1.2018 Open Statement Example

Visual Basic for Applications Reference

Open Statement Example
This example illustrates various uses of the Open statement to enable input and output to a file.

The following code opens the file TESTFILE in sequential-input mode.

Open "TESTFILE" For Input As #1
' Close before reopening in another mode.
Close #1

This example opens the file in Binary mode for writing operations only.

Open "TESTFILE" For B inary Access W rite As #1
' Close before reopening in another mode.
Close #1

The following example opens the file in Random mode. The file contains records of the user-defined type Record.

Type Record ' Define user-defined type .
ID As In teger
Name As S trin g * 20

End Type

Dim MyRecord As Record ' Declare v a r ia b le .
Open "TESTFILE" For Random As #1 Len = Len(MyRecord)
' Close before reopening in another mode.
Close #1

This code example opens the file for sequential output; any process can read or write to file.

Open "TESTFILE" For Output Shared As #1
' Close before reopening in another mode.
Close #1

This code example opens the file in Binary mode for reading; other processes can't read file.

Open "TESTFILE" For B inary Access Read Lock Read As #1

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266178(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa266178(v=vs.60).aspx

3. 1.2018 Option Base Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Option Base Statement
See Also Example Specifics

Used at module level to declare the default lower bound for array subscripts.

Syntax

Option Base {0 | 1}

Remarks

Because the default base is 0, the Option Base statement is never required. If used, the statement must appear in a module
before any procedures. Option Base can appear only once in a module and must precede array declarations that include
dimensions.

Note The To clause in the Dim, Private, Public, ReDim, and Static statements provides a more flexible way to control the
range of an array's subscripts. However, if you don't explicitly set the lower bound with a To clause, you can use Option Base
to change the default lower bound to 1. The base of an array created with the the ParamArray keyword is zero; Option
Base does not affect ParamArray (or the Array function, when qualified with the name of its type library, for example
VBA.Array).

The Option Base statement only affects the lower bound of arrays in the module where the statement is located.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266179(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229644(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266180(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa171682.aspx
https://msdn.microsoft.com/en-us/library/aa219965.aspx
https://msdn.microsoft.com/en-us/library/aa212247.aspx
https://msdn.microsoft.com/en-us/library/aa171680.aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa266179(v=vs.60).aspx

3. 1.2018 Option Base Statement Example

Visual Basic for Applications Reference

Option Base Statement Example
This example uses the Option Base statement to override the default base array subscript value of 0. The LBound function
returns the smallest available subscript for the indicated dimension of an array. The Option Base statement is used at the
module level only.

Option base 1 ' Set d e fau lt a rray sub scrip ts to 1.

Dim Lower
Dim M yArray(20), TwoDArray(3, 4) ' Declare a rray v a r ia b le s .
Dim ZeroArray(0 To 5) ' Override d e fau lt base su b sc r ip t .
' Use LBound function to te s t lower bounds of a rra y s .
Lower = LBound(MyArray) ' Returns 1 .
Lower = LBound(TwoDArray, 2) ' Returns 1.
Lower = LBound(ZeroArray) ' Returns 0.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266180(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa266180(v=vs.60).aspx

3. 1.2018 Option Compare Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Option Compare Statement
See Also Example Specifics

Used at module level to declare the default comparison method to use when string data is compared.

Syntax

Option Compare {Binary | Text | Database}

Remarks

If used, the Option Compare statement must appear in a module before any procedures.

The Option Compare statement specifies the string comparison method (Binary, Text, or Database) for a module. If a
module doesn't include an Option Compare statement, the default text comparison method is Binary.

Option Compare Binary results in string comparisons based on a sort order derived from the internal binary representations
of the characters. In Microsoft Windows, sort order is determined by the code page. A typical binary sort order is shown in
the following example:

A < B < E < Z < a < b < e < z < < < < < <

Option Compare Text results in string comparisons based on a case-insensitive text sort order determined by your system's
locale. When the same characters are sorted using Option Compare Text, the following text sort order is produced:

(A=a) < (=) < (B=b) < (E=e) < (=) < (Z=z) < (=)

Option Compare Database can only be used within Microsoft Access. This results in string comparisons based on the sort
order determined by the locale ID of the database where the string comparisons occur.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266181(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229645(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266182(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa171682.aspx
https://msdn.microsoft.com/en-us/library/aa171680.aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa212267.aspx
https://msdn.microsoft.com/en-us/library/aa212196.aspx
https://msdn.microsoft.com/en-us/library/aa266181(v=vs.60).aspx

3. 1.2018 Option Compare Statement Example

Visual Basic for Applications Reference

Option Compare Statement Example
This example uses the Option Compare statement to set the default string comparison method. The Option Compare
statement is used at the module level only.

' Set the s tr in g comparison method to B in a ry .
Option compare B inary ' That i s , "AAA" i s le s s than "aaa".
' Set the s tr in g comparison method to T ext.
Option compare Text ' That i s , "AAA" i s equal to "aaa".

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266182(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa266182(v=vs.60).aspx

3. 1.2018 Option Explicit Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Option Explicit Statement
See Also Example Specifics

Used at module level to force explicit declaration of all variables in that module.

Syntax

Option Explicit

Remarks

If used, the Option Explicit statement must appear in a module before any procedures.

When Option Explicit appears in a module, you must explicitly declare all variables using the Dim, Private, Public, ReDim,
or Static statements. If you attempt to use an undeclared variable name, an error occurs at compile time.

If you don't use the Option Explicit statement, all undeclared variables are of Variant type unless the default type is
otherwise specified with a Deftype statement.

Note Use Option Explicit to avoid incorrectly typing the name of an existing variable or to avoid confusion in code where
the scope of the variable is not clear.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266183(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229646(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266184(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa171682.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa171680.aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa210361.aspx
https://msdn.microsoft.com/en-us/library/aa266183(v=vs.60).aspx

3. 1.2018 Option Explicit Statement Example

Visual Basic for Applications Reference

Option Explicit Statement Example
This example uses the Option Explicit statement to force explicit declaration of all variables. Attempting to use an
undeclared variable causes an error at compile time. The Option Explicit statement is used at the module level only.

Option e x p l ic i t ' Force e x p l ic i t va ria b le d e c la ra t io n .
Dim MyVar ' Declare v a r ia b le .
MyInt = 10 ' Undeclared va ria b le generates e r ro r .
MyVar = 10 ' Declared v a r ia b le does not generate e rro r .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266184(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa266184(v=vs.60).aspx

3. 1.2018 Option Private Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Option Private Statement
See Also Example Specifics

When used in host applications that allow references across multiple projects, Option Private Module prevents a modules
contents from being referenced outside its project. In host applications that dont permit such references, for example,
standalone versions of Visual Basic, Option Private has no effect.

Syntax

Option Private Module

Remarks

If used, the Option Private statement must appear at module level, before any procedures.

When a module contains Option Private Module, the public parts, for example, variables, objects, and user-defined types
declared at module level, are still available within the project containing the module, but they are not available to other
applications or projects.

Note Option Private is only useful for host applications that support simultaneous loading of multiple projects and permit
references between the loaded projects. For example, Microsoft Excel permits loading of multiple projects and Option
Private Module can be used to restrict cross-project visibility. Although Visual Basic permits loading of multiple projects,
references between projects are never permitted in Visual Basic.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266185(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229647(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266186(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa172189.aspx
https://msdn.microsoft.com/en-us/library/aa171680.aspx
https://msdn.microsoft.com/en-us/library/aa171682.aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa171792.aspx
https://msdn.microsoft.com/en-us/library/aa172189.aspx
https://msdn.microsoft.com/en-us/library/aa266185(v=vs.60).aspx

3. 1.2018 Option Private Statement Example

Visual Basic for Applications Reference

Option Private Statement Example
This example demonstrates the Option Private statement, which is used at module level to indicate that the entire module is
private. With Option Private Module, module-level parts not declared Private are available to other modules in the project,
but not to other projects or applications.

Option p riva te Module In d ica te s th at module i s p r iv a te .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266186(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa266186(v=vs.60).aspx

3. 1.2018 Print # Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Print # Statement
See Also Example Specifics

Writes display-formatted data to a sequential file.

Syntax

Print #filenumber, [outputlist]

The Print # statement syntax has these parts:

Part Description

filenumber Required. Any valid file number.

outputlist Optional. Expression or list of expressions to print.

Settings

The outputlist argument settings are:

[{Spc(n) | Tab[(n)]}] [expression] [charpos]

Setting Description

Spc(n) Used to insert space characters in the output, where n is the number of space characters to insert.

Tab(n) Used to position the insertion point to an absolute column number, where n is the column number. Use Tab
with no argument to position the insertion point at the beginning of the next print zone.

expression Numeric expressions or string expressions to print.

charpos Specifies the insertion point for the next character. Use a semicolon to position the insertion point
immediately after the last character displayed. Use Tab(n) to position the insertion point to an absolute
column number. Use Tab with no argument to position the insertion point at the beginning of the next print
zone. If charpos is omitted, the next character is printed on the next line.

Remarks

https://msdn.microsoft.com/en-us/library/aa266187(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229648(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266188(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa266187(v=vs.60).aspx

3. 1.2018 Print # Statement

Data written with Print # is usually read from a file with Line Input # or Input.

If you omit outputlist and include only a list separator after filenumber, a blank line is printed to the file. Multiple expressions
can be separated with either a space or a semicolon. A space has the same effect as a semicolon.

For Boolean data, either True or Fa lse is printed. The True and False keywords are not translated, regardless of the locale.

Date data is written to the file using the standard short date format recognized by your system. When either the date or the
time component is missing or zero, only the part provided gets written to the file.

Nothing is written to the file if outputlist data is Empty. However, if outputlist data is Null, Null is written to the file.

For Error data, the output appears as E rro r errorcode. The Error keyword is not translated regardless of the locale.

All data written to the file using Print # is internationally aware; that is, the data is properly formatted using the appropriate
decimal separator.

Because Print # writes an image of the data to the file, you must delimit the data so it prints correctly. If you use Tab with no
arguments to move the print position to the next print zone, Print # also writes the spaces between print fields to the file.

Note If, at some future time, you want to read the data from a file using the Input # statement, use the Write # statement
instead of the Print # statement to write the data to the file. Using Write # ensures the integrity of each separate data field
by properly delimiting it, so it can be read back in using Input #. Using Write # also ensures it can be correctly read in any
locale.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266187(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa210841.aspx
https://msdn.microsoft.com/en-us/library/aa211377.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/library/aa266187(v=vs.60).aspx

3. 1.2018 Print # Statement Example

Visual Basic for Applications Reference

Print # Statement Example
This example uses the Print # statement to write data to a file.

Open "TESTFILE" For Output As #1 ' Open f i l e fo r output.
P r in t #1, "Th is i s a te s t " ' P r in t te x t to f i l e .
P r in t #1, ' P r in t blank l in e to f i l e .
P r in t #1, "Zone 1 " ; Tab ; "Zone 2" ' P r in t in two p rin t zones.
P r in t #1, "H ello" ; " " ; "World" ' Separate s tr in g s with space.
P r in t #1, Spc(5) ; "5 leading spaces " ' P r in t f iv e lead ing spaces.
P r in t #1, Tab(10) ; "H ello" ' P r in t word at column 10.

' Assign Boolean, Date, N ull and E rro r va lu e s .
Dim MyBool, MyDate, MyNull, MyError
MyBool = False : MyDate = #February 12, 1969# : MyNull = Null
MyError = CVErr(32767)
' True, F a lse , N u ll, and E rro r are tra n s la te d using lo ca le se tt in g s of
' your system. Date l i t e r a l s are w ritten using standard short date
' form at.
P r in t #1, MyBool ; " i s a Boolean value"
P r in t #1, MyDate ; " i s a date"
P r in t #1, MyNull ; " i s a n u ll value"
P r in t #1, MyError ; " i s an e rro r value"
Close #1 ' Close f i l e .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266188(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa266188(v=vs.60).aspx

3. 1.2018 Private Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Private Statement
See Also Example Specifics

Used at module level to declare private variables and allocate storage space.

Syntax

Private [WithEvents] vamame[([subscripts])] [As [New] type] [.[WithEvents] varname[([subscripts])] [As [New] type]] . . .

The Private statement syntax has these parts:

Part Description

WithEvents Optional. Keyword that specifies that varname is an object variable used to respond to events triggered by
an ActiveX object. WithEvents is valid only in class modules. You can declare as many individual variables
as you like using WithEvents, but you can't create arrays with WithEvents. You can't use New with
WithEvents.

varname Required. Name of the variable; follows standard variable naming conventions.

subscripts Optional. Dimensions of an array variable; up to 60 multiple dimensions may be declared. The subscripts
argument uses the following syntax:

[lower To] upper [,[lower To] upper] . . .

When not explicitly stated in lower, the lower bound of an array is controlled by the Option Base
statement. The lower bound is zero if no Option Base statement is present.

New Optional. Keyword that enables implicit creation of an object. If you use New when declaring the object
variable, a new instance of the object is created on first reference to it, so you don't have to use the Set
statement to assign the object reference. The New keyword can't be used to declare variables of any
intrinsic data type, can't be used to declare instances of dependent objects, and cant be used with
WithEvents.

type Optional. Data type of the variable; may be Byte, Boolean, Integer, Long, Currency, Single, Double, Decimal
(not currently supported), Date, String (for variable-length strings), String * length (for fixed-length
strings), Object, Variant, a user-defined type, or an object type. Use a separate As type clause for each
variable being defined.

Remarks

Private variables are available only to the module in which they are declared.

https://msdn.microsoft.com/en-us/library/aa266189(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229649(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266190(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa171682.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa210316.aspx
https://msdn.microsoft.com/en-us/library/aa219965.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa220031.aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/library/aa210393.aspx
https://msdn.microsoft.com/en-us/library/aa212174.aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa210841.aspx
https://msdn.microsoft.com/en-us/library/aa212271.aspx
https://msdn.microsoft.com/en-us/library/aa171802.aspx
https://msdn.microsoft.com/en-us/library/aa266189(v=vs.60).aspx

3. 1.2018 Private Statement

Use the Private statement to declare the data type of a variable. For example, the following statement declares a variable as
an Integer:

P riva te NumberOfEmployees As Integer

You can also use a Private statement to declare the object type of a variable. The following statement declares a variable for
a new instance of a worksheet.

P riva te X As New Worksheet

If the New keyword isn't used when declaring an object variable, the variable that refers to the object must be assigned an
existing object using the Set statement before it can be used. Until it's assigned an object, the declared object variable has
the special value Nothing, which indicates that it doesn't refer to any particular instance of an object.

If you don't specify a data type or object type, and there is no Deftype statement in the module, the variable is Variant by
default.

You can also use the Private statement with empty parentheses to declare a dynamic array. After declaring a dynamic array,
use the ReDim statement within a procedure to define the number of dimensions and elements in the array. If you try to
redeclare a dimension for an array variable whose size was explicitly specified in a Private, Public, or Dim statement, an error
occurs.

When variables are initialized, a numeric variable is initialized to 0, a variable-length string is initialized to a zero-length string
(""), and a fixed-length string is filled with zeros. Variant variables are initialized to Empty. Each element of a user-defined
type variable is initialized as if it were a separate variable.

Note When you use the Private statement in a procedure, you generally put the Private statement at the beginning of the
procedure.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266189(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa211377.aspx
https://msdn.microsoft.com/en-us/library/aa266189(v=vs.60).aspx

3. 1.2018 Private Statement Example

Visual Basic for Applications Reference

Private Statement Example
This example shows the Private statement being used at the module level to declare variables as private; that is, they are
available only to the module in which they are declared.

P r iv a te Number As In teger ' P riva te In teger v a r ia b le .
P r iv a te NameArray(1 To 5) As S trin g ' P riva te a rray v a r ia b le .
' M ultip le d e c la ra t io n s , two V arian ts and one In te g e r, a l l P r iv a te .
P r iv a te MyVar, YourVar, Th isVar As In teger

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266190(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa266190(v=vs.60).aspx

3. 1.2018 Property Get Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Property Get Statement
See Also Example Specifics

Declares the name, arguments, and code that form the body of a Property procedure, which gets the value of a property.

Syntax

[Public | Private | Friend] [Static] Property Get name [(arglist)] [As type]
[statements]
[name = expression]
[Exit Property]
[statements]
[name = expression]

End Property

The Property Get statement syntax has these parts:

Part Description

Public Optional. Indicates that the Property Get procedure is accessible to all other procedures in all modules. If
used in a module that contains an Option Private statement, the procedure is not available outside the
project.

Private Optional. Indicates that the Property Get procedure is accessible only to other procedures in the module
where it is declared.

Friend Optional. Used only in a class module. Indicates that the Property Get procedure is visible throughout the
project, but not visible to a controller of an instance of an object.

Static Optional. Indicates that the Property Get procedure's local variables are preserved between calls. The Static
attribute doesn't affect variables that are declared outside the Property Get procedure, even if they are
used in the procedure.

name Required. Name of the Property Get procedure; follows standard variable naming conventions, except that
the name can be the same as a Property Let or Property Set procedure in the same module.

arglist Optional. List of variables representing arguments that are passed to the Property Get procedure when it is
called. Multiple arguments are separated by commas. The name and data type of each argument in a
Property Get procedure must be the same as the corresponding argument in a Property Let procedure (if
one exists).

type Optional. Data type of the value returned by the Property Get procedure; may be Byte, Boolean, Integer,
Long, Currency, Single, Double, Decimal (not currently supported), Date, String (except fixed length), Object,

https://msdn.microsoft.com/en-us/library/aa266191(v=vs.60).aspx 1/3

https://msdn.microsoft.com/en-us/library/aa229650(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266194(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa172196.aspx
https://msdn.microsoft.com/en-us/library/aa171680.aspx
https://msdn.microsoft.com/en-us/library/aa172189.aspx
https://msdn.microsoft.com/en-us/library/aa210316.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa220031.aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/library/aa210393.aspx
https://msdn.microsoft.com/en-us/library/aa212174.aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa210841.aspx
https://msdn.microsoft.com/en-us/library/aa212271.aspx
https://msdn.microsoft.com/en-us/library/aa171802.aspx
https://msdn.microsoft.com/en-us/library/aa266191(v=vs.60).aspx

3. 1.2018 Property Get Statement

Variant, user-defined type, and Arrays.
The return type of a Property Get procedure must be the same data type as the last (or sometimes the
only) argument in a corresponding Property Let procedure (if one exists) that defines the value assigned to
the property on the right side of an expression.

statements Optional. Any group of statements to be executed within the body of the Property Get procedure.

expression Optional. Value of the property returned by the procedure defined by the Property Get statement.

The arglist argument has the following syntax and parts:

[Optional] [ByVal | ByRef] [ParamArray] varname[()] [As type] [= defaultvalue]

Part Description

Optional Optional. Indicates that an argument is not required. If used, all subsequent arguments in arglist must also
be optional and declared using the Optional keyword.

ByVal Optional. Indicates that the argument is passed by value.

ByRef Optional. Indicates that the argument is passed by reference. ByRef is the default in Visual Basic.

ParamArray Optional. Used only as the last argument in arglist to indicate that the final argument is an Optional array
of Variant elements. The ParamArray keyword allows you to provide an arbitrary number of arguments.
It may not be used with ByVal, ByRef, or Optional.

varname Required. Name of the variable representing the argument; follows standard variable naming conventions.

type Optional. Data type of the argument passed to the procedure; may be Byte, Boolean, Integer, Long,
Currency, Single, Double, Decimal (not currently supported), Date, String (variable length only), Object,
Variant, or a specific object type. If the parameter is not Optional, a user-defined type may also be
specified.

defaultvalue Optional. Any constant or constant expression. Valid for Optional parameters only. If the type is an
Object, an explicit default value can only be Nothing.

Remarks

If not explicitly specified using Public, Private, or Friend, Property procedures are public by default. If Static is not used, the
value of local variables is not preserved between calls. The Friend keyword can only be used in class modules. However,
Friend procedures can be accessed by procedures in any module of a project. A Friend procedure doesn't appear in the type
library of its parent class, nor can a Friend procedure be late bound.

All executable code must be in procedures. You can't define a Property Get procedure inside another Property, Sub, or
Function procedure.

The Exit Property statement causes an immediate exit from a Property Get procedure. Program execution continues with
the statement following the statement that called the Property Get procedure. Any number of Exit Property statements can
appear anywhere in a Property Get procedure.

Like a Sub and Property Let procedure, a Property Get procedure is a separate procedure that can take arguments, perform
a series of statements, and change the values of its arguments. However, unlike a Sub or Property Let procedure, you can

https://msdn.microsoft.com/en-us/library/aa266191(v=vs.60).aspx 2/3

https://msdn.microsoft.com/en-us/library/aa219965.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa210373.aspx
https://msdn.microsoft.com/en-us/library/aa212381.aspx
https://msdn.microsoft.com/en-us/library/aa266191(v=vs.60).aspx

3. 1.2018 Property Get Statement

use a Property Get procedure on the right side of an expression in the same way you use a Function or a property name
when you want to return the value of a property.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266191(v=vs.60).aspx 3/3

https://msdn.microsoft.com/en-us/library/aa266191(v=vs.60).aspx

3. 1.2018 Property Get Statement Example

Visual Basic for Applications Reference

Property Get Statement Example
This example uses the Property Get statement to define a property procedure that gets the value of a property. The
property identifies the current color of a pen as a string.

Dim CurrentColor As In teger
Const BLACK = 0, RED = 1, GREEN = 2, BLUE = 3

' Returns the current co lo r of the pen as a s t r in g .
Property Get PenColor() As S trin g

Se lect Case CurrentColor
Case RED

PenColor = "Red"
Case GREEN

PenColor = "Green"
Case BLUE

PenColor = "Blue"
End Se lect

End Property

' The fo llow ing code gets the co lo r o f the pen
' c a ll in g the Property Get procedure.
ColorName = PenColor

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266194(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa266194(v=vs.60).aspx

3. 1.2018 Property Let Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Property Let Statement
See Also Example Specifics

Declares the name, arguments, and code that form the body of a Property Let procedure, which assigns a value to a
property.

Syntax

[Public | Private | Friend] [Static] Property Let name ([arglist,] value)
[statements]
[Exit Property]
[statements]

End Property

The Property Let statement syntax has these parts:

Part Description

Public Optional. Indicates that the Property Let procedure is accessible to all other procedures in all modules. If
used in a module that contains an Option Private statement, the procedure is not available outside the
project.

Private Optional. Indicates that the Property Let procedure is accessible only to other procedures in the module
where it is declared.

Friend Optional. Used only in a class module. Indicates that the Property Let procedure is visible throughout the
project, but not visible to a controller of an instance of an object.

Static Optional. Indicates that the Property Let procedure's local variables are preserved between calls. The Static
attribute doesn't affect variables that are declared outside the Property Let procedure, even if they are
used in the procedure.

name Required. Name of the Property Let procedure; follows standard variable naming conventions, except that
the name can be the same as a Property Get or Property Set procedure in the same module.

arglist Required. List of variables representing arguments that are passed to the Property Let procedure when it is
called. Multiple arguments are separated by commas. The name and data type of each argument in a
Property Let procedure must be the same as the corresponding argument in a Property Get procedure.

value Required. Variable to contain the value to be assigned to the property. When the procedure is called, this
argument appears on the right side of the calling expression. The data type of value must be the same as
the return type of the corresponding Property Get procedure.

https://msdn.microsoft.com/en-us/library/aa266197(v=vs.60).aspx 1/3

https://msdn.microsoft.com/en-us/library/aa229651(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266200(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa172196.aspx
https://msdn.microsoft.com/en-us/library/aa171680.aspx
https://msdn.microsoft.com/en-us/library/aa172189.aspx
https://msdn.microsoft.com/en-us/library/aa210316.aspx
https://msdn.microsoft.com/en-us/library/aa172189.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa266197(v=vs.60).aspx

3. 1.2018 Property Let Statement

statements Optional. Any group of statements to be executed within the Property Let procedure.

The arglist argument has the following syntax and parts:

[Optional] [ByVal | ByRef] [ParamArray] varname[()] [As type] [= defaultvalue]

Part Description

Optional Optional. Indicates that an argument is not required. If used, all subsequent arguments in arglist must also
be optional and declared using the Optional keyword. Note that it is not possible for the right side of a
Property Let expression to be Optional.

ByVal Optional. Indicates that the argument is passed by value.

ByRef Optional. Indicates that the argument is passed by reference. ByRef is the default in Visual Basic.

ParamArray Optional. Used only as the last argument in arglist to indicate that the final argument is an Optional array
of Variant elements. The ParamArray keyword allows you to provide an arbitrary number of arguments.
It may not be used with ByVal, ByRef, or Optional.

varname Required. Name of the variable representing the argument; follows standard variable naming conventions.

type Optional. Data type of the argument passed to the procedure; may be Byte, Boolean, Integer, Long,
Currency, Single, Double, Decimal (not currently supported), Date, String (variable length only), Object,
Variant, or a specific object type. If the parameter is not Optional, a user-defined type may also be
specified.

defaultvalue Optional. Any constant or constant expression. Valid for Optional parameters only. If the type is an
Object, an explicit default value can only be Nothing.

Note Every Property Let statement must define at least one argument for the procedure it defines. That argument (or the
last argument if there is more than one) contains the actual value to be assigned to the property when the procedure
defined by the Property Let statement is invoked. That argument is referred to as value in the preceding syntax.

Remarks

If not explicitly specified using Public, Private, or Friend, Property procedures are public by default. If Static isn't used, the
value of local variables is not preserved between calls. The Friend keyword can only be used in class modules. However,
Friend procedures can be accessed by procedures in any module of a project. A Friend procedure doesn't appear in the type
library of its parent class, nor can a Friend procedure be late bound.

All executable code must be in procedures. You can't define a Property Let procedure inside another Property, Sub, or
Function procedure.

The Exit Property statement causes an immediate exit from a Property Let procedure. Program execution continues with
the statement following the statement that called the Property Let procedure. Any number of Exit Property statements can
appear anywhere in a Property Let procedure.

Like a Function and Property Get procedure, a Property Let procedure is a separate procedure that can take arguments,
perform a series of statements, and change the value of its arguments. However, unlike a Function and Property Get
procedure, both of which return a value, you can only use a Property Let procedure on the left side of a property
assignment expression or Let statement.

https://msdn.microsoft.com/en-us/library/aa266197(v=vs.60).aspx 2/3

https://msdn.microsoft.com/en-us/library/aa212247.aspx
https://msdn.microsoft.com/en-us/library/aa220031.aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/library/aa210393.aspx
https://msdn.microsoft.com/en-us/library/aa212174.aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa210841.aspx
https://msdn.microsoft.com/en-us/library/aa212271.aspx
https://msdn.microsoft.com/en-us/library/aa171802.aspx
https://msdn.microsoft.com/en-us/library/aa210373.aspx
https://msdn.microsoft.com/en-us/library/aa212381.aspx
https://msdn.microsoft.com/en-us/library/aa266197(v=vs.60).aspx

3. 1.2018 Property Let Statement Example

Visual Basic for Applications Reference

Property Let Statement Example
This example uses the Property Let statement to define a procedure that assigns a value to a property. The property
identifies the pen color for a drawing package.

Dim CurrentColor As In teger
Const BLACK = 0, RED = 1, GREEN = 2, BLUE = 3

' Set the pen co lo r property fo r a Drawing package.
' The m odule-level v a r ia b le CurrentColor i s set to
' a numeric value th at id e n t if ie s the co lo r used fo r drawing.
Property Let PenColor(ColorName As S tr in g)

Se lect Case ColorName ' Check co lo r name s t r in g .
Case "Red"

CurrentColor = RED ' Assign value fo r Red.
Case "Green"

CurrentColor = GREEN ' Assign value fo r Green.
Case "Blue"

CurrentColor = BLUE ' Assign value fo r B lue .
Case E lse

CurrentColor = BLACK ' Assign d e fau lt va lue .
End Se lect

End Property

' The fo llow ing code sets the PenColor property fo r a drawing package
' by c a ll in g the Property le t procedure.

PenColor = "Red"

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266200(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa266200(v=vs.60).aspx

3. 1.2018 Property Set Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Property Set Statement
See Also Example Specifics

Declares the name, arguments, and code that form the body of a Property procedure, which sets a reference to an object.

Syntax

[Public | Private | Friend] [Static] Property Set name ([arglist,] reference)
[statements]
[Exit Property]
[statements]

End Property

The Property Set statement syntax has these parts:

Part Description

Optional Optional. Indicates that the argument may or may not be supplied by the caller.

Public Optional. Indicates that the Property Set procedure is accessible to all other procedures in all modules. If
used in a module that contains an Option Private statement, the procedure is not available outside the
project.

Private Optional. Indicates that the Property Set procedure is accessible only to other procedures in the module
where it is declared.

Friend Optional. Used only in a class module. Indicates that the Property Set procedure is visible throughout the
project, but not visible to a controller of an instance of an object.

Static Optional. Indicates that the Property Set procedure's local variables are preserved between calls. The Static
attribute doesn't affect variables that are declared outside the Property Set procedure, even if they are
used in the procedure.

name Required. Name of the Property Set procedure; follows standard variable naming conventions, except that
the name can be the same as a Property Get or Property Let procedure in the same module.

arglist Required. List of variables representing arguments that are passed to the Property Set procedure when it is
called. Multiple arguments are separated by commas.

reference Required. Variable containing the object reference used on the right side of the object reference
assignment.

statements Optional. Any group of statements to be executed within the body of the Property procedure.

https://msdn.microsoft.com/en-us/library/aa266202(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229652(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266205(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa171792.aspx
https://msdn.microsoft.com/en-us/library/aa171680.aspx
https://msdn.microsoft.com/en-us/library/aa172189.aspx
https://msdn.microsoft.com/en-us/library/aa210316.aspx
https://msdn.microsoft.com/en-us/library/aa172189.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa266202(v=vs.60).aspx

3. 1.2018
I________ i

Property Set Statement
J

The arglist argument has the following syntax and parts:

[Optional] [ByVal | ByRef] [ParamArray] varname[()] [As type] [= defaultvalue]

Part Description

Optional Optional. Indicates that an argument is not required. If used, all subsequent arguments in arglist must also
be optional and declared using the Optional keyword. Note that it is not possible for the right side of a
Property Set expression to be Optional.

ByVal Optional. Indicates that the argument is passed by value.

ByRef Optional. Indicates that the argument is passed by reference. ByRef is the default in Visual Basic.

ParamArray Optional. Used only as the last argument in arglist to indicate that the final argument is an Optional array
of Variant elements. The ParamArray keyword allows you to provide an arbitrary number of arguments.
It may not be used with ByVal, ByRef, or Optional.

varname Required. Name of the variable representing the argument; follows standard variable naming conventions.

type Optional. Data type of the argument passed to the procedure; may be Byte, Boolean, Integer, Long,
Currency, Single, Double, Decimal (not currently supported), Date, String (variable length only), Object,
Variant, or a specific object type. If the parameter is not Optional, a user-defined type may also be
specified.

defaultvalue Optional. Any constant or constant expression. Valid for Optional parameters only. If the type is an
Object, an explicit default value can only be Nothing.

Note Every Property Set statement must define at least one argument for the procedure it defines. That argument (or the
last argument if there is more than one) contains the actual object reference for the property when the procedure defined by
the Property Set statement is invoked. It is referred to as reference in the preceding syntax. It can't be Optional.

Remarks

If not explicitly specified using Public, Private, or Friend, Property procedures are public by default. If Static isn't used, the
value of local variables is not preserved between calls. The Friend keyword can only be used in class modules. However,
Friend procedures can be accessed by procedures in any module of a project. A Friend procedure doesn't appear in the type
library of its parent class, nor can a Friend procedure be late bound.

All executable code must be in procedures. You can't define a Property Set procedure inside another Property, Sub, or
Function procedure.

The Exit Property statement causes an immediate exit from a Property Set procedure. Program execution continues with
the statement following the statement that called the Property Set procedure. Any number of Exit Property statements can
appear anywhere in a Property Set procedure.

Like a Function and Property Get procedure, a Property Set procedure is a separate procedure that can take arguments,
perform a series of statements, and change the value of its arguments. However, unlike a Function and Property Get
procedure, both of which return a value, you can only use a Property Set procedure on the left side of an object reference
assignment (Set statement).

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266202(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa220031.aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/library/aa210393.aspx
https://msdn.microsoft.com/en-us/library/aa212174.aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa210841.aspx
https://msdn.microsoft.com/en-us/library/aa212271.aspx
https://msdn.microsoft.com/en-us/library/aa171802.aspx
https://msdn.microsoft.com/en-us/library/aa210373.aspx
https://msdn.microsoft.com/en-us/library/aa212381.aspx
https://msdn.microsoft.com/en-us/library/aa266202(v=vs.60).aspx

3. 1.2018 Property Set Statement Example

Visual Basic for Applications Reference

Property Set Statement Example
This example uses the Property Set statement to define a property procedure that sets a reference to an object.

' The Pen property may be set to d if fe re n t Pen implementations.
Property Set Pen(P As O bject)

Set CurrentPen = P ' Assign Pen to o b ject .
End Property

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266205(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa266205(v=vs.60).aspx

3. 1.2018 Public Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Public Statement
See Also Example Specifics

Used at module level to declare public variables and allocate storage space.

Syntax

Public [WithEvents] vamame[([subscripts])] [As [New] type] [.[WithEvents] varname[([subscripts])] [As [New] type]]

The Public statement syntax has these parts:

Part Description

WithEvents Optional. Keyword specifying that varname is an object variable used to respond to events triggered by an
ActiveX object. WithEvents is valid only in class modules. You can declare as many individual variables as
you like using WithEvents, but you can't create arrays with WithEvents. You can't use New with
WithEvents.

varname Required. Name of the variable; follows standard variable naming conventions.

subscripts Optional. Dimensions of an array variable; up to 60 multiple dimensions may be declared. The subscripts
argument uses the following syntax:
[lower To] upper [,[lower To] upper] . . .

When not explicitly stated in lower, the lower bound of an array is controlled by the Option Base
statement. The lower bound is zero if no Option Base statement is present.

New Optional. Keyword that enables implicit creation of an object. If you use New when declaring the object
variable, a new instance of the object is created on first reference to it, so you don't have to use the Set
statement to assign the object reference. The New keyword can't be used to declare variables of any
intrinsic data type, can't be used to declare instances of dependent objects, and can't be used with
WithEvents.

type Optional. Data type of the variable; may be Byte, Boolean, Integer, Long, Currency, Single, Double, Decimal
(not currently supported), Date, String, (for variable-length strings), String * length (for fixed-length
strings), Object, Variant, a user-defined type, or an object type. Use a separate As type clause for each
variable being defined.

Remarks

Variables declared using the Public statement are available to all procedures in all modules in all applications unless Option
Private Module is in effect; in which case, the variables are public only within the project in which they reside.

https://msdn.microsoft.com/en-us/Nbrary/aa266207(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229653(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266210(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa171682.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa210316.aspx
https://msdn.microsoft.com/en-us/library/aa219965.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa220031.aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/library/aa210393.aspx
https://msdn.microsoft.com/en-us/library/aa212174.aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa210841.aspx
https://msdn.microsoft.com/en-us/library/aa212271.aspx
https://msdn.microsoft.com/en-us/library/aa171802.aspx
https://msdn.microsoft.com/en-us/library/aa172189.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa266207(v=vs.60).aspx

3. 1.2018 Public Statement

Caution The Public statement can't be used in a class module to declare a fixed-length string variable.

Use the Public statement to declare the data type of a variable. For example, the following statement declares a variable as
an Integer:

Pub lic NumberOfEmployees As In teger

Also use a Public statement to declare the object type of a variable. The following statement declares a variable for a new
instance of a worksheet.

Pub lic X As New Worksheet

If the New keyword is not used when declaring an object variable, the variable that refers to the object must be assigned an
existing object using the Set statement before it can be used. Until it is assigned an object, the declared object variable has
the special value Nothing, which indicates that it doesn't refer to any particular instance of an object.

You can also use the Public statement with empty parentheses to declare a dynamic array. After declaring a dynamic array,
use the ReDim statement within a procedure to define the number of dimensions and elements in the array. If you try to
redeclare a dimension for an array variable whose size was explicitly specified in a Private, Public, or Dim statement, an error
occurs.

If you don't specify a data type or object type and there is no Deftype statement in the module, the variable is Variant by
default.

When variables are initialized, a numeric variable is initialized to 0, a variable-length string is initialized to a zero-length string
(""), and a fixed-length string is filled with zeros. Variant variables are initialized to Empty. Each element of a user-defined
type variable is initialized as if it were a separate variable.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266207(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa211377.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa266207(v=vs.60).aspx

3. 1.2018 Public Statement Example

Visual Basic for Applications Reference

Public Statement Example
This example uses the Public statement at the module level (General section) of a standard module to explicitly declare
variables as public; that is, they are available to all procedures in all modules in all applications unless Option Private
Module is in effect.

Pub lic Number As In teger ' Pub lic In teger v a r ia b le .
Pub lic NameArray(1 To 5) As S tr in g ' Pub lic a rray v a r ia b le .
' M ultip le d e c la ra t io n s , two V arian ts and one In te g e r, a l l P u b lic .
Pub lic MyVar, YourVar, Th isVar As In teger

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266210(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa266210(v=vs.60).aspx

3. 1.2018 Put Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
Visual Studio 6.0

Put Statement
See Also Example Specifics

Writes data from a variable to a disk file.

Syntax

Put [#]filenumber, [recnumber], varname

The Put statement syntax has these parts:

Part Description

filenumber Required. Any valid file number.

recnumber Optional. Variant (Long). Record number (Random mode files) or byte number (Binary mode files) at
which writing begins.

varname Required. Name of variable containing data to be written to disk.

Remarks

Data written with Put is usually read from a file with Get.

The first record or byte in a file is at position 1, the second record or byte is at position 2, and so on. If you omit recnumber,
the next record or byte after the last Get or Put statement or pointed to by the last Seek function is written. You must
include delimiting commas, for example:

Put # 4 j ,F i le B u f fe r

For files opened in Random mode, the following rules apply:

• If the length of the data being written is less than the length specified in the Len clause of the Open statement, Put
writes subsequent records on record-length boundaries. The space between the end of one record and the beginning
of the next record is padded with the existing contents of the file buffer. Because the amount of padding data can't be
determined with any certainty, it is generally a good idea to have the record length match the length of the data
being written. If the length of the data being written is greater than the length specified in the Len clause of the Open
statement, an error occurs.

• If the variable being written is a variable-length string, Put writes a 2-byte descriptor containing the string length and
then the variable. The record length specified by the Len clause in the Open statement must be at least 2 bytes

https://msdn.microsoft.com/en-us/library/aa266212(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229654(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266217(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa266212(v=vs.60).aspx

3. 1.2018 Put Statement

greater than the actual length of the string.

• If the variable being written is a Variant of a numeric type, Put writes 2 bytes identifying the VarType of the Variant
and then writes the variable. For example, when writing a Variant of VarType 3, Put writes 6 bytes: 2 bytes identifying
the Variant as VarType 3 (Long) and 4 bytes containing the Long data. The record length specified by the Len clause
in the Open statement must be at least 2 bytes greater than the actual number of bytes required to store the variable.

Note You can use the Put statement to write a Variant array to disk, but you can't use Put to write a scalar Variant
containing an array to disk. You also can't use Put to write objects to disk.

• If the variable being written is a Variant of VarType 8 (String), Put writes 2 bytes identifying the VarType, 2 bytes
indicating the length of the string, and then writes the string data. The record length specified by the Len clause in the
Open statement must be at least 4 bytes greater than the actual length of the string.

• If the variable being written is a dynamic array, Put writes a descriptor whose length equals 2 plus 8 times the number
of dimensions, that is, 2 + 8 * NumberOfDimensions. The record length specified by the Len clause in the Open
statement must be greater than or equal to the sum of all the bytes required to write the array data and the array
descriptor. For example, the following array declaration requires 118 bytes when the array is written to disk.

Dim MyArray(1 To 5 ,1 To 10) As Integer

• The 118 bytes are distributed as follows: 18 bytes for the descriptor (2 + 8 * 2), and 100 bytes for the data (5 * 10 * 2).

• If the variable being written is a fixed-size array, Put writes only the data. No descriptor is written to disk.

• If the variable being written is any other type of variable (not a variable-length string or a Variant), Put writes only the
variable data. The record length specified by the Len clause in the Open statement must be greater than or equal to
the length of the data being written.

• Put writes elements of user-defined types as if each were written individually, except there is no padding between
elements. On disk, a dynamic array in a user-defined type written with Put is prefixed by a descriptor whose length
equals 2 plus 8 times the number of dimensions, that is, 2 + 8 * NumberOfDimensions. The record length specified by
the Len clause in the Open statement must be greater than or equal to the sum of all the bytes required to write the
individual elements, including any arrays and their descriptors.

For files opened in Binary mode, all of the Random rules apply, except:

• The Len clause in the Open statement has no effect. Put writes all variables to disk contiguously; that is, with no
padding between records.

• For any array other than an array in a user-defined type, Put writes only the data. No descriptor is written.

• Put writes variable-length strings that are not elements of user-defined types without the 2-byte length descriptor.
The number of bytes written equals the number of characters in the string. For example, the following statements
write 10 bytes to file number 1:

VarString$ = S tr in g $ (1 0 ," ")
Put # 1 ,,V a rS trin g $

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266212(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa219965.aspx
https://msdn.microsoft.com/en-us/library/aa266212(v=vs.60).aspx

3. 1.2018 Put Statement Example

Visual Basic for Applications Reference

Put Statement Example
This example uses the Put statement to write data to a file. Five records of the user-defined type Record are written to the
file.

Type Record ' Define user-defined type .
ID As In teger
Name As S trin g * 20

End Type

Dim MyRecord As Record, RecordNumber ' Declare v a r ia b le s .
' Open f i l e fo r random access.
Open "TESTFILE" For Random As #1 Len = Len(MyRecord)
For RecordNumber = 1 To 5 ' Loop 5 tim es.

MyRecord.ID = RecordNumber ' Define ID .
MyRecord.Name = "My Name" & RecordNumber ' Create a s t r in g .
Put #1, RecordNumber, MyRecord ' Write record to f i l e .

Next RecordNumber
Close #1 ' Close f i l e .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266217(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa266217(v=vs.60).aspx

