
3. 1.2018 RaiseEvent Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

RaiseEvent Statement
See Also Example Specifics

Fires an event declared at module level within a class, form, or document.

Syntax

RaiseEvent eventname [(argumentlist)]

The required eventname is the name of an event declared within the module and follows Basic variable naming conventions.

The RaiseEvent statement syntax has these parts:

Part Descrip tion

eventname Required. Name of the event to fire.

argumentlist Optional. Comma-delim ited list o f variables, arrays, or expressions The argumentlist must be enclosed by
parentheses. If there are no arguments, the parentheses must be omitted.

Remarks

If the event has not been declared within the module in which it is raised, an error occurs. The follow ing fragment illustrates

an event declaration and a procedure in which the event is raised.

' D e c la re an even t a t module le v e l o f a c la s s module
Event LogonCompleted (UserName as S t r in g)

Sub
' R a ise the e ven t.
R a iseEven t LogonCompleted ("A n to in e Ja n ")

End Sub

If the event has no arguments, including empty parentheses, in the RaiseEvent, invocation of the event causes an error. You

can't use RaiseEvent to fire events that are not explicitly declared in the module. For example, if a form has a Click event, you

can't fire its Click event using RaiseEvent. If you declare a Click event in the form module, it shadows the forms own Click

event. You can still invoke the forms Click event using normal syntax for calling the event, but not using the RaiseEvent

statement.

Event firing is done in the order that the connections are established. Since events can have ByRef parameters, a process

that connects late may receive parameters that have been changed by an earlier event handler.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266219(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229655(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266221(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa171682.aspx
https://msdn.microsoft.com/en-us/library/aa220050.aspx
https://msdn.microsoft.com/en-us/library/aa171680.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa219965.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa211449.aspx
https://msdn.microsoft.com/en-us/library/aa266219(v=vs.60).aspx

3. 1.2018 RaiseEvent Statment Example

Visual Basic for Applications Reference

RaiseEvent Statment Example
The follow ing example uses events to count off seconds during a demonstration of the fastest 100 meter race. The code

illustrates all o f the event-related methods, properties, and statements, including the RaiseEvent statement.

The class that raises an event is the event source, and the classes that implement the event are the sinks. An event source can

have multiple sinks for the events it generates. When the class raises the event, that event is fired on every class that has

elected to sink events for that instance of the object.

The example also uses a form (Form1) with a button (Command1), a label (Label1), and two text boxes (Text1 and Text2).

When you click the button, the first text box displays "From Now" and the second starts to count seconds. When the full time

(9.84 seconds) has elapsed, the first text box displays "Until Now" and the second displays "9.84"

The code for Form1 specifies the initial and terminal states of the form. It also contains the code executed when events are

raised.

O p tion E x p l i c i t

P r iv a te W ithEven ts mText As T im e rS ta te

P r iv a te Sub Command1_Click()
T e x t1 .T e x t = "From Now"
T e x t1 .R e fre sh
T e x t2 .T e x t = "0"
T e x t2 .R e fre sh
C a l l m Text.T im erTask(9 .84)

End Sub

P r iv a te Sub Form_Load()
Command1.Caption = " C l i c k to S t a r t T im er"
T e x t1 .T e x t = ""
T e x t2 .T e x t = ""
L a b e l1 .C a p t io n = "The f a s t e s t 100 m eters eve r run to o k t h i s lo n g : "
Set mText = New T im e rS ta te
End Sub

P r iv a te Sub m Text_ChangeText()
T e x t1 .T e x t = " U n t i l Now"
T e x t2 .T e x t = "9 .84 "

End Sub

P r iv a te Sub m Text_UpdateT im e(ByVal dblJump As Double)
T e x t2 .T e x t = S tr(F o rm a t(db lJum p , "0 "))
DoEvents

End Sub

The remaining code is in a class module named TimerState. Included among the commands in this module are the Raise

Event statements.

O p tion E x p l i c i t
P u b l ic Event UpdateT im e(ByVa l dblJump As Double)
P u b l ic Event ChangeText()

P u b l ic Sub T im e rTask (B yVa l D u ra tio n As Double)

https://msdn.microsoft.com/en-us/library/aa266221(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa266221(v=vs.60).aspx

3. 1.2018 RaiseEvent Statment Example

Dim d b lS t a r t As Double
Dim db lSecond As Double
Dim d b lS o Fa r As Double
d b lS t a r t = T im er
d b lS o Fa r = d b lS t a r t

Do W h ile T im er < d b lS t a r t + D u ra tio n
I f T im er - d b lS o Fa r >= 1 Then

d b lS o Fa r = d b lS o Fa r + 1
R a iseE ven t UpdateT im e(T im er - d b lS t a r t)

End I f
Loop

R a iseE ven t ChangeText

End Sub

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266221(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa266221(v=vs.60).aspx

3. 1.2018 Randomize Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Randomize Statement
See Also Example Specifics

Initializes the random-number generator.

Syntax

Random ize [number]

The optional number argument is a Variant or any valid numeric expression.

Remarks

Random ize uses number to initialize the Rnd function's random-number generator, giving it a new seed value. If you omit

number, the value returned by the system timer is used as the new seed value.

If Random ize is not used, the Rnd function (with no arguments) uses the same number as a seed the first time it is called,

and thereafter uses the last generated number as a seed value.

N o te To repeat sequences of random numbers, call Rnd with a negative argument immediately before using Random ize

with a numeric argument. Using Random ize with the same value for number does not repeat the previous sequence.

Security N o te Because the Random statement and the Rnd function start with a seed value and generate
numbers that fall within a finite range, the results may be predictable by someone who knows the algorithm
used to generate them. Consequently, the Random statement and the Rnd function should not be used to
generate random numbers for use in cryptography.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266225(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229656(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266229(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/library/aa266225(v=vs.60).aspx

3. 1.2018 Randomize Statement Example

Visual Basic for Applications Reference

Randomize Statement Example
This example uses the Random ize statement to initialize the random-number generator. Because the number argument has

been omitted, Random ize uses the return value from the T im er function as the new seed value.

Dim MyValue
Randomize ' I n i t i a l i z e random-number g e n e ra to r .

MyValue = I n t ((6 * Rnd) + 1) ' G enera te random v a lu e between 1 and 6.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266229(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa266229(v=vs.60).aspx

3. 1.2018 ReDim Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

ReDim Statement
See Also Example Specifics

Used at procedure level to reallocate storage space for dynamic array variables.

Syntax

ReD im [Preserve] varname(subscripts) [As type] [, varname(subscripts) [As type]] . . .

The ReD im statement syntax has these parts:

Part Descrip tion

Preserve Optional. Keyword used to preserve the data in an existing array when you change the size of the last
dimension.

varname Required. Name of the variable; follows standard variable naming conventions.

subscripts Required. Dimensions of an array variable; up to 60 multiple dimensions may be declared. The subscripts
argument uses the follow ing syntax:
[lower To] upper [,[lower To] upper] . . .

When not explicitly stated in lower, the lower bound of an array is controlled by the O p tion Base statement.

The lower bound is zero if no O p tion Base statement is present.

type Optional. Data type of the variable; may be Byte, Boolean, Integer, Long, Currency, Single, Double, Decimal
(not currently supported), Date, String (for variable-length strings), S tring * length (for fixed-length strings),
Object, Variant, a user-defined type, or an object type. Use a separate A s type clause for each variable being
defined. For a Va rian t containing an array, type describes the type of each element of the array, but doesn't
change the Va rian t to some other type.

Remarks

The ReD im statement is used to size or resize a dynamic array that has already been formally declared using a Private,

Public, or D im statement with empty parentheses (without dimension subscripts).

You can use the ReD im statement repeatedly to change the number of elements and dimensions in an array. However, you

can't declare an array of one data type and later use ReD im to change the array to another data type, unless the array is

contained in a Variant. If the array is contained in a Variant, the type of the elements can be changed using an A s type
clause, unless youre using the Preserve keyword, in which case, no changes of data type are permitted.

If you use the Preserve keyword, you can resize only the last array dimension and you can't change the number of

dimensions at all. For example, if your array has only one dimension, you can resize that dimension because it is the last and

https://msdn.microsoft.com/en-us/Nbrary/aa266231(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229657(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266235(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa219965.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa220031.aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/library/aa210393.aspx
https://msdn.microsoft.com/en-us/library/aa212174.aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa210841.aspx
https://msdn.microsoft.com/en-us/library/aa212271.aspx
https://msdn.microsoft.com/en-us/library/aa171802.aspx
https://msdn.microsoft.com/en-us/library/aa212247.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa266231(v=vs.60).aspx

3. 1.2018 ReDim Statement

only dimension. However, if your array has two or more dimensions, you can change the size of only the last dimension and

still preserve the contents of the array. The follow ing example shows how you can increase the size of the last dimension of a

dynamic array w ithout erasing any existing data contained in the array.

ReDim X (10 , 10, 10)

ReDim P re se rv e X (10 , 10, 15)

Similarly, when you use Preserve, you can change the size of the array only by changing the upper bound; changing the

lower bound causes an error.

If you make an array smaller than it was, data in the eliminated elements will be lost. If you pass an array to a procedure by

reference, you can't redimension the array within the procedure.

When variables are initialized, a numeric variable is initialized to 0, a variable-length string is initialized to a zero-length string

(""), and a fixed-length string is filled with zeros. Va rian t variables are initialized to Empty. Each element of a user-defined

type variable is initialized as if it were a separate variable. A variable that refers to an object must be assigned an existing

object using the Set statement before it can be used. Until it is assigned an object, the declared object variable has the

special value Noth ing , which indicates that it doesn't refer to any particular instance of an object.

Cau tion The ReD im statement acts as a declarative statement if the variable it declares doesn't exist at module level or

procedure level. If another variable with the same name is created later, even in a w ider scope, ReD im will refer to the later

variable and won't necessarily cause a compilation error, even if O p tion Exp lic it is in effect. To avoid such conflicts, ReD im

should not be used as a declarative statement, but simply for redimensioning arrays.

N o te To resize an array contained in a Variant, you must explicitly declare the Va rian t variable before attempting to resize

its array.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266231(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa211377.aspx
https://msdn.microsoft.com/en-us/library/aa171682.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa266231(v=vs.60).aspx

3. 1.2018 ReDim Statement Example

Visual Basic for Applications Reference

ReDim Statement Example
This example uses the ReD im statement to allocate and reallocate storage space for dynamic-array variables. It assumes the

O p tion Base is 1.

Dim M yA rray () As In te g e r ' D e c la re dynam ic a r ra y .
Redim M yA rray (5) ' A l lo c a te 5 e lem en ts .
For I = 1 To 5 ' Loop 5 t im e s .

M yA rra y (I) = I ' I n i t i a l i z e a r ra y .
Next I

The next statement resizes the array and erases the elements.

Redim M yA rray(10) ' R e s ize to 10 e lem en ts .
For I = 1 To 10 ' Loop 10 t im e s .

M yA rra y (I) = I ' I n i t i a l i z e a r ra y .
Next I

The follow ing statement resizes the array but does not erase elements.

Redim P re se rv e M yA rray(15) ' R e s ize to 15 e lem en ts .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266235(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa266235(v=vs.60).aspx

3. 1.2018 Rem Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Rem Statement
See Also Example Specifics

Used to include explanatory remarks in a program.

Syntax

Rem comment

You can also use the follow ing syntax:

' comment

The optional comment argument is the text o f any comment you want to include. A space is required between the Rem

keyword and comment.

Remarks

If you use line numbers or line labels, you can branch from a GoTo or GoSub statement to a line containing a Rem

statement. Execution continues with the first executable statement follow ing the Rem statement. If the Rem keyword follows

other statements on a line, it must be separated from the statements by a colon (:).

You can use an apostrophe (') instead of the Rem keyword. When you use an apostrophe, the colon is not required after

other statements.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266237(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa266239(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212247.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa266237(v=vs.60).aspx

3. 1.2018 Rem Statement Example

Visual Basic for Applications Reference

Rem Statement Example
This example illustrates the various forms of the Rem statement, which is used to include explanatory remarks in a program.

Dim M yStr1 , M yStr2
M yStr1 = " H e llo " : Rem Comment a f t e r a sta tem ent sepa ra ted by a c o lo n .
M yStr2 = "Goodbye" ' T h is i s a ls o a comment; no co lo n i s needed.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266239(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa266239(v=vs.60).aspx

3. 1.2018 Reset Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Reset Statement
See Also Example Specifics

Closes all disk files opened using the Open statement.

Syntax

Reset

Remarks

The Reset statement closes all active files opened by the Open statement and writes the contents of all file buffers to disk.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266242(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229658(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266244(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266242(v=vs.60).aspx

3. 1.2018 Reset Statement Example

Visual Basic for Applications Reference

Reset Statement Example
This example uses the Reset statement to close all open files and write the contents of all file buffers to disk. Note the use of

the Va rian t variable F ileNum ber as both a string and a number.

Dim F ileNum ber
For F ileNum ber = 1 To 5 ' Loop 5 t im e s .

' Open f i l e f o r o u tp u t. F ileNum ber i s conca tena ted in t o th e s t r in g
' TEST f o r the f i l e name, but i s a number f o l lo w in g a #.
Open "TEST" & F ileNum ber For Output As #FileNum ber
W r ite # FileNum ber, "H e llo W orld" ' W r ite data to f i l e .

Next F ileNum ber
Reset ' C lo se f i l e s and w r it e co n te n ts

' to d is k .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266244(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa266244(v=vs.60).aspx

3. 1.2018 Resume Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Resume Statement
See Also Example Specifics

Resumes execution after an error-handling routine is finished.

Syntax

Resume [0]

Resume N ext

Resume line

The Resume statement syntax can have any of the follow ing forms:

Statem ent Descrip tion

Resume If the error occurred in the same procedure as the error handler, execution resumes with the statement that
caused the error. If the error occurred in a called procedure, execution resumes at the statement that last
called out of the procedure containing the error-handling routine.

Resume
N ext

If the error occurred in the same procedure as the error handler, execution resumes with the statement
immediately follow ing the statement that caused the error. If the error occurred in a called procedure,
execution resumes with the statement immediately follow ing the statement that last called out of the
procedure containing the error-handling routine (or On Error Resume N ext statement).

Resume
line

Execution resumes at line specified in the required line argument. The line argument is a line label or line
number and must be in the same procedure as the error handler.

Remarks

If you use a Resume statement anywhere except in an error-handling routine, an error occurs.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266247(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229659(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266249(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa212247.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa266247(v=vs.60).aspx

3. 1.2018 Resume Statement Example

Visual Basic for Applications Reference

Resume Statement Example
This example uses the Resume statement to end error handling in a procedure, and then resume execution with the

statement that caused the error. Error number 55 is generated to illustrate using the Resume statement.

Sub ResumeStatementDemo()
On E r ro r GoTo E rro rH a n d le r ' Enab le e r ro r -h a n d l in g r o u t in e .
Open "TESTFILE" For O utput As #1 ' Open f i l e f o r o u tp u t.
K i l l "TESTFILE" ' A ttem pt to d e le te open f i l e .
E x it Sub ' E x it Sub to a vo id e r r o r h a n d le r .

E r ro rH a n d le r : ' E r ro r - h a n d lin g r o u t in e .
S e le c t Case Err.Num ber ' E v a lu a te e r r o r number.

Case 55 ' " F i l e a lre a d y open" e r r o r .
C lo se #1 ' C lo se open f i l e .

Case E ls e
' Handle o th e r s i t u a t io n s h e re

End S e le c t
Resume ' Resume e x e cu t io n a t same l in e
' th a t caused the e r r o r .

End Sub

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266249(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa266249(v=vs.60).aspx

3. 1.2018 RmDir Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

RmDir Statement
See Also Example Specifics

Removes an existing directory or folder.

Syntax

Rm D ir path

The required path argument is a string expression that identifies the directory or folder to be removed. The path may include

the drive. If no drive is specified, Rm D ir removes the directory or folder on the current drive.

Remarks

An error occurs if you try to use Rm D ir on a directory or folder containing files. Use the K ill statement to delete all files

before attempting to remove a directory or folder.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266252(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229660(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266253(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa266252(v=vs.60).aspx

3. 1.2018 RmDir Statement Example

Visual Basic for Applications Reference

RmDir Statement Example
This example uses the Rm D ir statement to remove an existing directory or folder.

' Assume th a t MYDIR i s an empty d ir e c t o r y o r f o ld e r .
RmDir "MYDIR" ' Remove MYDIR.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266253(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa266253(v=vs.60).aspx

3. 1.2018 RSet Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

RSet Statement
See Also Example Specifics

Right aligns a string within a string variable.

Syntax

RSet stringvar = string

The RSet statement syntax has these parts:

Part Descrip tion

stringvar Required. Name of string variable.

string Required. String expression to be right-aligned within stringvar.

Remarks

If stringvar is longer than string, RSet replaces any leftover characters in stringvar with spaces, back to its beginning.

N o te RSet can't be used with user-defined types.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266256(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229661(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266259(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa266256(v=vs.60).aspx

3. 1.2018 RSet Statement Example

Visual Basic for Applications Reference

RSet Statement Example
This example uses the RSet statement to right align a string within a string variable.

Dim M yS tr in g
M yS tr in g = "0123456789" ' I n i t i a l i z e s t r in g .
R se t M yS tr in g = "R ig h t-> " ' M yS tr in g c o n ta in s " R ig h t-> " .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266259(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa266259(v=vs.60).aspx

3. 1.2018 SavePicture Statement

This documentation is archived and is not being maintained.

Visual Basic Reference
V isua l S tud io 6.0

SavePicture Statement
See Also Example

Saves a graphic from the P ictu re or Image property of an object or control (if one is associated with it) to a file.

Syntax

SaveP icture picture, stringexpression

The SaveP icture statement syntax has these parts:

Part Descrip tion

picture P icture or Image control from which the graphics file is to be created.

stringexpression Filename of the graphics file to save.

Remarks

If a graphic was loaded from a file to the P ictu re property of an object, either at design time or at run time, and its a bitmap,

icon, metafile, or enhanced metafile, it's saved using the same format as the original file. If it is a GIF or JPEG file, it is saved as

a bitmap file.

Graphics in an Image property are always saved as bitmap (.bmp) files regardless of their original format.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa445827(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229713(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa445828(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa172352.aspx
https://msdn.microsoft.com/en-us/library/aa445827(v=vs.60).aspx

3. 1.2018 SavePicture Statement Example

Visual Basic Reference

SavePicture Statement Example
This example uses the SaveP icture statement to save a graphic drawn into a Form objects P ictu re property. To try this

example, paste the code into the Declarations section of a Form object, and then run the example and click the Form object.

P r iv a te Sub Fo rm _C lick ()
' D e c la re v a r ia b le s .
Dim CX, CY, L im it , R ad ius as In te g e r , Msg as S t r in g
ScaleMode = v b P ix e ls ' Set s c a le to p ix e ls .
AutoRedraw = True ' Turn on AutoRedraw .
W idth = H e igh t ' Change w id th to match h e ig h t .
CX = S ca leW id th / 2 ' Set X p o s it io n .
CY = S ca le H e ig h t / 2 ' Set Y p o s it io n .
L im it = CX ' L im it s iz e o f c i r c l e s .
For R ad ius = 0 To L im it ' Set ra d iu s .

C i r c le (CX, CY), R ad iu s , RGB(Rnd * 255, Rnd * 255, Rnd * 255)
DoEvents ' Y ie ld f o r o th e r p ro c e s s in g .

Next Rad ius
Msg = "Choose OK to save the g ra p h ic s from t h i s form "
Msg = Msg & " to a b itm ap f i l e . "
MsgBox Msg
S a v e P ic tu re Image, "TEST.BMP" ' Save p ic tu r e to f i l e .

End Sub

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa445828(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa445828(v=vs.60).aspx

3. 1.2018 SaveSetting Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

SaveSetting Statement
See Also Example Specifics

Saves or creates an application entry in the application's entry in the W indows registry.

Syntax

SaveSetting appname, section, key, setting

The SaveSetting statement syntax has these named arguments:

Part Descrip tion

appname Required. String expression containing the name of the application or project to which the setting applies.

section Required. String expression containing the name of the section where the key setting is being saved.

key Required. String expression containing the name of the key setting being saved.

setting Required. Expression containing the value that key is being set to.

Remarks

An error occurs if the key setting cant be saved for any reason.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266261(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229662(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266265(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa172189.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa266261(v=vs.60).aspx

3. 1.2018 SaveSetting Statement Example

Visual Basic for Applications Reference

SaveSetting Statement Example
The follow ing example first uses the SaveSetting statement to make entries in the W indows registry (or .ini file on 16-bit

W indows platforms) for the MyApp application, and then uses the De leteSetting statement to remove them.

' P la ce some s e t t in g s in th e r e g is t r y .
S a v e S e tt in g appname := "MyApp", s e c t io n := " S ta r tu p " ,

key := "Top", s e t t in g := 75
S a v e S e tt in g "M yA p p " ,"S ta r tu p " , " L e f t " , 50
' Remove s e c t io n and a l l i t s s e t t in g s from r e g is t r y .
D e le te S e t t in g "MyApp", "S ta r tu p "

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266265(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa266265(v=vs.60).aspx

3. 1.2018 Seek Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Seek Statement
See Also Example Specifics

Sets the position for the next read/write operation within a file opened using the Open statement.

Syntax

Seek [#]filenumber, position

The Seek statement syntax has these parts:

Part Descrip tion

filenumber Required. Any valid file number.

position Required. Number in the range 1 2,147,483,647, inclusive, that indicates where the next read/write operation
should occur.

Remarks

Record numbers specified in Get and Pu t statements override file positioning performed by Seek.

Performing a file-write operation after a Seek operation beyond the end of a file extends the file. If you attempt a Seek

operation to a negative or zero position, an error occurs.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266268(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229663(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266271(v=vs.60).aspx
https://msdn.microsoft.com/en-us/Nbrary/aa266268(v=vs.60).aspx

3. 1.2018 Seek Statement Example

Visual Basic for Applications Reference

Seek Statement Example
This example uses the Seek statement to set the position for the next read or write within a file. This example assumes

TESTFILE is a file containing records of the user-defined type Record.

Type Record ' D e fin e u s e r -d e f in e d ty p e .
ID As In te g e r
Name As S t r in g * 20

End Type

For files opened in Random mode, Seek sets the next record.

Dim MyRecord As Record , M axS ize , RecordNumber ' D e c la re v a r ia b le s .
' Open f i l e in ra n d o m -f ile mode.
Open "TESTFILE" For Random As #1 Len = Len(MyRecord)
M axS ize = LOF(1) \ Len(MyRecord) ' Get number o f re co rd s in f i l e .
' The lo op reads a l l re co rd s s t a r t in g from the l a s t .
For RecordNumber = M axS ize To 1 S tep - 1

Seek #1, RecordNumber ' Set p o s it io n .
Get #1, , MyRecord ' Read re co rd .

Next RecordNumber
C lo se #1 ' C lo se f i l e .

For files opened in modes other than Random mode, Seek sets the byte position at which the next operation takes place.

Assume TESTFILE is a file containing a few lines of text.

Dim M axS ize , N extChar, MyChar
Open "TESTFILE" For Inpu t As #1 ' Open f i l e f o r in p u t .
M axS ize = LOF(1) ' Get s iz e o f f i l e in b y te s .
' The lo op reads a l l c h a ra c te rs s t a r t in g from the l a s t .
For NextChar = M axS ize To 1 S tep -1

Seek #1, NextChar ' Set p o s it io n .
MyChar = In p u t(1 , #1) ' Read c h a ra c te r .

Next NextChar
C lo se #1 ' C lo se f i l e .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266271(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa266271(v=vs.60).aspx

3. 1.2018 Select Case Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Select Case Statement
See Also Example Specifics

Executes one of several groups of statements, depending on the value of an expression.

Syntax

Select Case testexpression
[Case expressionlist-n
[statements-n]] . . .
[Case Else

[elsestatements]]

End Select

The Select Case statement syntax has these parts:

Part Descrip tion

testexpression Required. Any numeric expression or string expression.

expressionlist-
n

Required if a Case appears. Delimited list o f one or more of the follow ing forms: expression, expression
To expression, Is comparisonoperator expression. The To keyword specifies a range of values. If you use
the To keyword, the smaller value must appear before To. Use the Is keyword with comparison
operators (except Is and Like) to specify a range of values. If not supplied, the Is keyword is
automatically inserted.

statements-n Optional. One or more statements executed if testexpression matches any part o f expressionlist-n.

elsestatements Optional. One or more statements executed if testexpression doesn't match any of the Case clause.

Remarks

If testexpression matches any Case expressionist expression, the statements follow ing that Case clause are executed up to the

next Case clause, or, for the last clause, up to End Select. Control then passes to the statement follow ing End Select. If

testexpression matches an expressionist expression in more than one Case clause, only the statements following the first

match are executed.

The Case Else clause is used to indicate the elsestatements to be executed if no match is found between the testexpression
and an expressionist in any of the other Case selections. A lthough not required, it is a good idea to have a Case Else

statement in your Select Case block to handle unforeseen testexpression values. If no Case expressionist matches

testexpression and there is no Case Else statement, execution continues at the statement follow ing End Select.

https://msdn.microsoft.com/en-us/library/aa266274(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229664(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa263665.aspx
https://msdn.microsoft.com/en-us/library/aa212247.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa210356.aspx
https://msdn.microsoft.com/en-us/library/aa266274(v=vs.60).aspx

3. 1.2018 Select Case Statement

You can use multiple expressions or ranges in each Case clause. For example, the follow ing line is valid:

Case 1 To 4 , 7 To 9, 11, 13, I s > MaxNumber

N o te The Is comparison operator is not the same as the Is keyword used in the Select Case statement.

You also can specify ranges and multiple expressions for character strings. In the following example, Case matches strings

that are exactly equal to e v e ry th in g , strings that fall between nu ts and soup in alphabetic order, and the current value of

TestItem :

Case " e v e ry th in g " , "n u ts " To "soup ", T estItem

Select Case statements can be nested. Each nested Select Case statement must have a matching End Select statement.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266274(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa266274(v=vs.60).aspx

3. 1.2018 Select Case Statement Example

Select Case Statement Example
This content is no longer actively maintained. It is provided as is, for anyone who may still be using these technologies, with

no warranties or claims of accuracy with regard to the most recent product version or service release.

This example displays the name of the mail system installed on the computer.

S e le c t Case A p p lic a t io n .M a ilS y s te m
Case I s = xlMAPI

MsgBox "M a il system i s M ic r o s o f t M a il"
Case I s = x lP o w e rT a lk

MsgBox "M a il system i s Pow erTa lk"
Case I s = x lN oM a ilS ys tem

MsgBox "No m a il system in s t a l le d "
End S e le c t

This example displays a message box that indicates the location of the active cell in the PivotTable report.

W o rk sh e e ts ("S h e e t1 ") .A c t iv a te
S e le c t Case A c t iv e C e l l . L o c a t io n I n T a b le
Case I s = xlRowHeader

MsgBox " A c t iv e c e l l i s p a r t o f a row header"
Case I s = x lCo lum nHeader

MsgBox " A c t iv e c e l l i s p a r t o f a column header"
Case I s = x lPageH eader

MsgBox " A c t iv e c e l l i s p a r t o f a page header"
Case I s = x lD a taH eade r

MsgBox " A c t iv e c e l l i s p a r t o f a data header"
Case I s = xlRowItem

MsgBox " A c t iv e c e l l i s p a r t o f a row item "
Case I s = x lCo lum nItem

MsgBox " A c t iv e c e l l i s p a r t o f a column item "
Case I s = x lPageItem

MsgBox " A c t iv e c e l l i s p a r t o f a page item "
Case I s = x lD a ta Item

MsgBox " A c t iv e c e l l i s p a r t o f a data item "
Case I s = x lT a b leB o d y

MsgBox " A c t iv e c e l l i s p a r t o f th e t a b le body"
End S e le c t

This example displays a message if the active cell on Sheet1 contains a cell error value. You can use this example as a

framework for a cell-error-value error handler.

W o rk sh e e ts ("S h e e t1 ") .A c t iv a te
I f I s E r r o r (A c t iv e C e l l . V a lu e) Then

e r r v a l = A c t iv e C e l l .V a lu e
S e le c t Case e r r v a l

Case C V E r r (x lE r rD iv 0)
MsgBox "#DIV/0! e r r o r

Case C V E rr(x lE r rN A)
MsgBox "#N/A e r r o r "

Case C V E rr(x lE rrN am e)
MsgBox "#NAME? e r r o r "

Case C V E r r (x lE r rN u l l)
MsgBox "#NULL! e r r o r "

https://msdn.microsoft.com/en-us/library/aa263665.aspx 1/2

https://msdn.microsoft.com/en-us/library/aa263665.aspx

3. 1.2018 Select Case Statement Example

Case C V E rr(x lE rrN um)
MsgBox "#NUM! e r r o r "

Case C V E r r (x lE r rR e f)
MsgBox "#REF! e r r o r "

Case C V E r r (x lE r rV a lu e)
MsgBox "#VALUE! e r r o r "

Case E ls e
MsgBox "T h is shou ld never happen !!"

End S e le c t
End I f

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa263665.aspx 2/2

https://msdn.microsoft.com/en-us/library/aa263665.aspx

3. 1.2018 SendKeys Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

SendKeys Statement
See Also Example Specifics

Sends one or more keystrokes to the active w indow as if typed at the keyboard.

Syntax

SendKeys string[, wait]

The SendKeys statement syntax has these named arguments:

Part Descrip tion

string Required. String expression specifying the keystrokes to send.

Wait Optional. Boolean value specifying the wait mode. If False (default), control is returned to the procedure
immediately after the keys are sent. If True, keystrokes must be processed before control is returned to the
procedure.

Remarks

Each key is represented by one or more characters. To specify a single keyboard character, use the character itself. For

example, to represent the letter A, use "A " for string. To represent more than one character, append each additional

character to the one preceding it. To represent the letters A, B, and C, use "A B C " for string.

The plus sign (+), caret (A), percent sign (%), tilde (~), and parentheses () have special meanings to SendKeys. To specify

one of these characters, enclose it within braces ({ }). For example, to specify the plus sign, use {+ } . Brackets ([]) have no

special meaning to SendKeys, but you must enclose them in braces. In other applications, brackets do have a special

meaning that may be significant when dynamic data exchange (DDE) occurs. To specify brace characters, use { { } and { } } .

To specify characters that aren't displayed when you press a key, such as ENTER or TAB, and keys that represent actions

rather than characters, use the codes shown below:

Key Code

BACKSPACE {BAC KSPACE} , { B S } , or {BK SP}

BREAK {BREAK}

CAPS LOCK {CAPSLO CK}

https://msdn.microsoft.com/en-us/Nbrary/aa266279(v=vs.60).aspx 1/3

https://msdn.microsoft.com/en-us/library/aa229665(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266281(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa210844.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa266279(v=vs.60).aspx

3. 1.2018 SendKeys Statement

DEL or DELETE {DELETE}or{DEL}

DOWN ARROW {DOWN}

END {END}

ENTER {ENTER}or~

ESC {ESC}

HELP {HELP}

HOME {HOME}

INS or INSERT {IN SERT}or{IN S}

LEFT ARROW {LEFT}

NUM LOCK {NUMLOCK}

PAGE DOWN {PGDN}

PAGE UP {PGUP}

PRINT SCREEN {PRTSC}

RIGHT ARROW {RIGHT}

SCROLL LOCK {SCROLLLOCK}

TAB {TAB}

UP ARROW {UP}

F1 {F1}

F2 {F2}

F3 {F3}

F4 {F4}

F5 {F5}

F6 {F6}

F7 {F7}

F8 {F8}

F9 {F9}

o

\—
1

L
l_ {F10}

https://msdn.microsoft.com/en-us/Nbrary/aa266279(v=vs.60).aspx 2/3

https://msdn.microsoft.com/en-us/Nbrary/aa266279(v=vs.60).aspx

3. 1.2018 SendKeys Statement

\—
1

\—
1

L
l_ {F11}

F12 {F12}

F13 {F13}

F14 {F14}

L
O

\—
1

L
l_ {F15}

L
O

\—
1

L
l_ {F16}

To specify keys combined with any combination of the SHIFT, CTRL, and ALT keys, precede the key code with one or more of

the following codes:

Key Code

SHIFT +

CTRL A

ALT %

To specify that any combination of SHIFT, CTRL, and ALT should be held down while several other keys are pressed, enclose

the code for those keys in parentheses. For example, to specify to hold down SHIFT while E and C are pressed, use "+(EC)".

To specify to hold down SHIFT while E is pressed, followed by C w ithout SHIFT, use "+EC".

To specify repeating keys, use the form {key number}. You must put a space between key and number. For example, {LEFT

42} means press the LEFT ARROW key 42 times; {h 10} means press H 10 times.

N o te You can't use SendKeys to send keystrokes to an application that is not designed to run in M icrosoft Windows.

Sendkeys also can't send the PRINT SCREEN key {PRTSC} to any application.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266279(v=vs.60).aspx 3/3

https://msdn.microsoft.com/en-us/Nbrary/aa266279(v=vs.60).aspx

3. 1.2018 SendKeys Statement Example

Visual Basic for Applications Reference

SendKeys Statement Example
This example uses the Shell function to run the Calculator application included with M icrosoft Windows. It uses the

SendKeys statement to send keystrokes to add some numbers, and then quit the Calculator. (To see the example, paste it

into a procedure, then run the procedure. Because A ppA ctiv a te changes the focus to the Calculator application, you can't

single step through the code.).

Dim R e tu rn V a lu e , I
R e tu rnVa lue = S h e ll("C A L C .E X E " , 1) ' Run C a lc u la t o r .
A p p A c t iv a te R e tu rnVa lue ' A c t iv a te th e C a lc u la t o r .
For I = 1 To 100 ' Set up co u n t in g lo o p .

SendKeys I & "{+ }", True ' Send k e y s tro k e s to C a lc u la t o r
Next I ' to add each v a lu e o f I .
SendKeys "= ", True ' Get grand t o t a l .
SendKeys "%{F4}", True ' Send ALT+F4 to c lo s e C a lc u la t o r .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266281(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa266281(v=vs.60).aspx

3. 1.2018 Set Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Set Statement
See Also Example Specifics

Assigns an object reference to a variable or property.

Syntax

Set objectvar = {[New] objectexpression | Nothing}

The Set statement syntax has these parts:

Part Descrip tion

objectvar Required. Name of the variable or property; follows standard variable naming conventions.

New Optional. N ew is usually used during declaration to enable implicit object creation. When N ew is used
with Set, it creates a new instance of the class. If objectvar contained a reference to an object, that
reference is released when the new one is assigned. The N ew keyword can't be used to create new
instances of any intrinsic data type and can't be used to create dependent objects.

objectexpression Required. Expression consisting of the name of an object, another declared variable of the same object
type, or a function or method that returns an object of the same object type.

N o th ing Optional. Discontinues association of objectvar with any specific object. Assigning N o th ing to objectvar
releases all the system and memory resources associated with the previously referenced object when
no other variable refers to it.

Remarks

To be valid, objectvar must be an object type consistent with the object being assigned to it.

The Dim, Private, Public, ReDim , and S tatic statements only declare a variable that refers to an object. No actual object is

referred to until you use the Set statement to assign a specific object.

The follow ing example illustrates how D im is used to declare an array with the type Form l. No instance of Form l actually

exists. Set then assigns references to new instances of Form l to the m yChildForm s variable. Such code might be used to

create child forms in an MDI application.

Dim m yChildForm s(1 to 4) As Form l
Set m yCh ildForm s(1) = New Form1
Set m yCh ildForm s(2) = New Form1

https://msdn.microsoft.com/en-us/library/aa266283(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229776(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa263667.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa172196.aspx
https://msdn.microsoft.com/en-us/library/aa220050.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa171675.aspx
https://msdn.microsoft.com/en-us/library/aa219965.aspx
https://msdn.microsoft.com/en-us/library/aa266283(v=vs.60).aspx

3. 1.2018 Set Statement

Set m yCh ildForm s(3) = New Form l
Set m yCh ildForm s(4) = New Form l

Generally, when you use Set to assign an object reference to a variable, no copy of the object is created for that variable.

Instead, a reference to the object is created. More than one object variable can refer to the same object. Because such

variables are references to the object rather than copies of the object, any change in the object is reflected in all variables

that refer to it. However, when you use the N ew keyword in the Set statement, you are actually creating an instance of the

object.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266283(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa266283(v=vs.60).aspx

3. 1.2018 Set Statement Example

Set Statement Example
This content is no longer actively maintained. It is provided as is, for anyone who may still be using these technologies, with

no warranties or claims of accuracy with regard to the most recent product version or service release.

This example adds a new worksheet to the active workbook and then sets the name of the worksheet.

S e t newSheet = W orksheets.Add
newSheet.Name = "1995 Budget"

This example creates a new worksheet and then inserts into it a list of all the names in the active workbook, including their

formulas in A1-style notation in the language of the user.

S e t newSheet = A ctiveW orkbook .W orkshee ts.Add
i = 1
For Each nm In ActiveW orkbook.Nam es

n e w S h e e t .C e lls (i, 1) .V a lu e = nm.NameLocal
n e w S h e e t .C e lls (i, 2) .V a lu e = & nm .R e fe rsToLoca l
i = i + 1

Next

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa263667.aspx 1/1

https://msdn.microsoft.com/en-us/library/aa263667.aspx

3. 1.2018 SetAttr Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

SetAttr Statement
See Also Example Specifics

Sets attribute information for a file.

Syntax

Se tA ttr pathname, attributes

The Se tA ttr statement syntax has these named arguments:

Part Descrip tion

pathname Required. String expression that specifies a file name may include directory or folder, and drive.

attributes Required. Constant or numeric expression, whose sum specifies file attributes.

Settings

The attributes argument settings are:

Constant Va lue Descrip tion

vbN orm a l 0 Normal (default).

vbReadO n ly 1 Read-only.

vbH idden 2 Hidden.

vbSystem 4 System file.

vbA rch ive 32 File has changed since last backup.

N o te These constants are specified by Visual Basic for Applications. The names can be used anywhere in your code in place

of the actual values.

Remarks

A run-time error occurs if you try to set the attributes of an open file.

https://msdn.microsoft.com/en-us/library/aa266286(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229669(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266288(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa210373.aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/library/aa266286(v=vs.60).aspx

3. 1.2018 SetAttr Statement

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266286(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa266286(v=vs.60).aspx

3. 1.2018 SetAttr Statement Example

Visual Basic for Applications Reference

SetAttr Statement Example
This example uses the Se tA ttr statement to set attributes for a file.

S e tA t t r "TESTFILE", vbHidden ' Set h idden a t t r ib u t e .
S e tA t t r "TESTFILE", vbHidden + vbReadOnly ' Set h idden and re a d -o n ly

' a t t r ib u t e s .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266288(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa266288(v=vs.60).aspx

3. 1.2018 Static Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Static Statement
See Also Example Specifics

Used at procedure level to declare variables and allocate storage space. Variables declared with the S tatic statement retain

their values as long as the code is running.

Syntax

Static vamame[([subscripts])] [As [New] type] [, vamame[([subscripts])] [As [New] type]] . . .

The S tatic statement syntax has these parts:

Part Descrip tion

varname Required. Name of the variable; follows standard variable naming conventions.

subscripts Optional. Dimensions of an array variable; up to 60 multiple dimensions may be declared. The subscripts
argument uses the follow ing syntax:
[lower To] upper [,[lower To] upper] . . .

When not explicitly stated in lower, the lower bound of an array is controlled by the O p tion Base statement.

The lower bound is zero if no O p tion Base statement is present.

New Optional. Keyword that enables implicit creation of an object. If you use N ew when declaring the object
variable, a new instance of the object is created on first reference to it, so you don't have to use the Set
statement to assign the object reference. The N ew keyword can't be used to declare variables of any intrinsic
data type and can't be used to declare instances of dependent objects.

type Optional. Data type of the variable; may be Byte, Boolean, Integer, Long, Currency, Single, Double, Decimal
(not currently supported), Date, String, (for variable-length strings), S tring * length (for fixed-length strings),
Object, Variant, a user-defined type, or an object type. Use a separate A s type clause for each variable being
defined.

Remarks

Once module code is running, variables declared with the S tatic statement retain their value until the module is reset or

restarted. In class modules, variables declared with the S tatic statement retain their value in each class instance until that

instance is destroyed. In form modules, static variables retain their value until the form is closed. Use the Static statement in

nonstatic procedures to explicitly declare variables that are visible only within the procedure, but whose lifetime is the same

as the module in which the procedure is defined.

Use a S tatic statement within a procedure to declare the data type of a variable that retains its value between procedure

calls. For example, the follow ing statement declares a fixed-size array of integers:

https://msdn.microsoft.com/en-us/library/aa266296(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229882(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa263668.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa219965.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa220031.aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/library/aa210393.aspx
https://msdn.microsoft.com/en-us/library/aa212174.aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa210841.aspx
https://msdn.microsoft.com/en-us/library/aa212271.aspx
https://msdn.microsoft.com/en-us/library/aa171802.aspx
https://msdn.microsoft.com/en-us/library/aa171680.aspx
https://msdn.microsoft.com/en-us/library/aa212247.aspx
https://msdn.microsoft.com/en-us/library/aa210316.aspx
https://msdn.microsoft.com/en-us/library/aa211449.aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa266296(v=vs.60).aspx

3. 1.2018 Static Statement

S t a t ic EmployeeNumber(200) As In te g e r

The follow ing statement declares a variable for a new instance of a worksheet:

S t a t ic X As New W orksheet

If the N ew keyword isn't used when declaring an object variable, the variable that refers to the object must be assigned an

existing object using the Set statement before it can be used. Until it is assigned an object, the declared object variable has

the special value N o th ing , which indicates that it doesn't refer to any particular instance of an object. When you use the

N ew keyword in the declaration, an instance of the object is created on the first reference to the object.

If you don't specify a data type or object type, and there is no Deftype statement in the module, the variable is V a rian t by

default.

N o te The Static statement and the S tatic keyword are similar, but used for different effects. If you declare a procedure

using the S tatic keyword (as in S t a t ic Sub C oun tS a le s ()), the storage space for all local variables within the procedure

is allocated once, and the value of the variables is preserved for the entire time the program is running. For nonstatic

procedures, storage space for variables is allocated each time the procedure is called and released when the procedure is

exited. The S tatic statement is used to declare specific variables within nonstatic procedures to preserve their value for as

long as the program is running.

When variables are initialized, a numeric variable is initialized to 0, a variable-length string is initialized to a zero-length string

(""), and a fixed-length string is filled with zeros. Va rian t variables are initialized to Empty. Each element of a user-defined

type variable is initialized as if it were a separate variable.

N o te When you use Static statements within a procedure, put them at the beginning of the procedure with other

declarative statements such as Dim.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266296(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa211377.aspx
https://msdn.microsoft.com/en-us/library/aa266296(v=vs.60).aspx

3. 1.2018 Static Statement Example

Static Statement Example
This content is no longer actively maintained. It is provided as is, for anyone who may still be using these technologies, with

no warranties or claims of accuracy with regard to the most recent product version or service release.

This example uses the worksheet function Pm t to calculate a home mortgage loan payment. Note that this example uses the

Inpu tBox method instead of the Inpu tBox function so that the method can perform type checking. The S tatic statements

cause Visual Basic to retain the values of the three variables; these are displayed as default values the next time you run the

example.

S t a t i c loanAmt
S t a t i c lo a n In t
S t a t i c loanTerm
loanAmt = A p p lic a t io n . In p u tB o x _

(Prom pt:="Loan amount (100,000 f o r exam p le)", _
D e fau lt:= lo anA m t, Type:=1)

lo a n In t = A p p lic a t io n . In p u tB o x _
(Prom pt:= "Annua l in t e r e s t ra te (8 .75 f o r e xam p le)", _

D e fa u lt := lo a n In t , Type:=1)
loanTerm = A p p lic a t io n . In p u tB o x _

(Prompt:="Term in y e a rs (30 f o r exam p le)", _
D e fau lt:= lo anT e rm , Type:=1)

payment = A p p lic a t io n .P m t (lo a n I n t / 1200, loanTerm * 12, loanAm t)
MsgBox "M on th ly payment i s " & Form at(paym ent, "C u rre n cy ")

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa263668.aspx 1/1

https://msdn.microsoft.com/en-us/library/aa263668.aspx

3. 1.2018 Stop Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Stop Statement
See Also Example Specifics

Suspends execution.

Syntax

Stop

Remarks

You can place S top statements anywhere in procedures to suspend execution. Using the S top statement is similar to setting

a breakpoint in the code.

The S top statement suspends execution, but unlike End, it doesn't close any files or clear variables, unless it is in a compiled

executable (.exe) file.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266300(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229892(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266303(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa220019.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa266300(v=vs.60).aspx

3. 1.2018 Stop Statement Example

Visual Basic for Applications Reference

Stop Statement Example
This example uses the S top statement to suspend execution for each iteration through the For...Next loop.

Dim I
For I = 1 To 10 ' S t a r t F o r . . .N e x t lo o p .

D e b u g .P r in t I ' P r in t I to th e Immediate window.
S top ' S top d u r in g each i t e r a t io n .

Next I

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266303(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa266303(v=vs.60).aspx

3. 1.2018 Sub Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Sub Statement
See Also Example Specifics

Declares the name, arguments, and code that form the body of a Sub procedure.

Syntax

[Private | Pub lic | Friend] [Static] Sub name [(arglist)]
[statements]
[Exit Sub]

[statements]

End Sub

The Sub statement syntax has these parts:

Part Descrip tion

Pub lic Optional. Indicates that the Sub procedure is accessible to all other procedures in all modules. If used in a
module that contains an O p tion P riva te statement, the procedure is not available outside the project.

P rivate Optional. Indicates that the Sub procedure is accessible only to other procedures in the module where it is
declared.

Friend Optional. Used only in a class m odule. Indicates that the Sub procedure is visible throughout the project,
but not visible to a controller o f an instance of an object.

Static Optional. Indicates that the Sub procedure's local variables are preserved between calls. The S tatic attribute
doesn't affect variables that are declared outside the Sub, even if they are used in the procedure.

name Required. Name of the Sub; follows standard variable naming conventions.

arglist Optional. List of variables representing arguments that are passed to the Sub procedure when it is called.
Multip le variables are separated by commas.

statements Optional. Any group of statements to be executed within the Sub procedure.

The arglist argument has the follow ing syntax and parts:

[Optional] [ByVal | ByRef] [ParamArray] varname[()] [As type] [= defaultvalue]

I I I
https://msdn.microsoft.com/en-us/Nbrary/aa266305(v=vs.60).aspx 1/3

https://msdn.microsoft.com/en-us/library/aa229896(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266308(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa171680.aspx
https://msdn.microsoft.com/en-us/library/aa172189.aspx
https://msdn.microsoft.com/en-us/library/aa210316.aspx
https://msdn.microsoft.com/en-us/library/aa172189.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa212247.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa266305(v=vs.60).aspx

3. 1.2018 Sub Statement

Part Descrip tion

O p tiona l Optional. Keyword indicating that an argument is not required. If used, all subsequent arguments in arglist
must also be optional and declared using the O p tiona l keyword. O p tiona l can't be used for any
argument if Param Array is used.

ByVal Optional. Indicates that the argument is passed by value.

ByRef Optional. Indicates that the argument is passed by reference. ByRef is the default in Visual Basic.

Param Array Optional. Used only as the last argument in arglist to indicate that the final argument is an O p tiona l array
of Va rian t elements. The Param Array keyword allows you to provide an arbitrary number of arguments.
Param Array can't be used with ByVal, ByRef, or Optional.

varname Required. Name of the variable representing the argument; follows standard variable naming conventions.

type Optional. Data type of the argument passed to the procedure; may be Byte, Boolean, Integer, Long,
Currency, Single, Double, Decimal (not currently supported), Date, String (variable-length only), Object,
Variant, or a specific object type. If the parameter is not O ptiona l, a user-defined type may also be
specified.

defaultvalue Optional. Any constant or constant expression. Valid for O p tiona l parameters only. If the type is an
Object, an explicit default value can only be Noth ing .

Remarks

If not explicitly specified using Public, Private, or Friend, Sub procedures are public by default. If S tatic isn't used, the value

of local variables is not preserved between calls. The Friend keyword can only be used in class modules. However, Friend

procedures can be accessed by procedures in any module of a project. A Friend procedure doesn't appear in the type library

of its parent class, nor can a Friend procedure be late bound.

Caution Sub procedures can be recursive; that is, they can call themselves to perform a given task. However, recursion can

lead to stack overflow. The S tatic keyword usually is not used with recursive Sub procedures.

All executable code must be in procedures. You can't define a Sub procedure inside another Sub, Function, or P rope rty

procedure.

The Exit Sub keywords cause an immediate exit from a Sub procedure. Program execution continues with the statement

follow ing the statement that called the Sub procedure. Any number of Exit Sub statements can appear anywhere in a Sub

procedure.

Like a Function procedure, a Sub procedure is a separate procedure that can take arguments, perform a series of

statements, and change the value of its arguments. However, unlike a Function procedure, which returns a value, a Sub

procedure can't be used in an expression.

You call a Sub procedure using the procedure name followed by the argument list. See the Call statement for specific

information on how to call Sub procedures.

Variables used in Sub procedures fall into two categories: those that are explicitly declared within the procedure and those

that are not. Variables that are explicitly declared in a procedure (using D im or the equivalent) are always local to the

procedure. Variables that are used but not explicitly declared in a procedure are also local unless they are explicitly declared

at some higher level outside the procedure.

Caution A procedure can use a variable that is not explicitly declared in the procedure, but a naming conflict can occur if

anything you defined at the module level has the same name. If your procedure refers to an undeclared variable that has the

same name as another procedure, constant or variable, it is assumed that your procedure is referring to that module-level

https://msdn.microsoft.com/en-us/Nbrary/aa266305(v=vs.60).aspx 2/3

https://msdn.microsoft.com/en-us/library/aa219965.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa220031.aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/library/aa210393.aspx
https://msdn.microsoft.com/en-us/library/aa212174.aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa210841.aspx
https://msdn.microsoft.com/en-us/library/aa212271.aspx
https://msdn.microsoft.com/en-us/library/aa171802.aspx
https://msdn.microsoft.com/en-us/library/aa210373.aspx
https://msdn.microsoft.com/en-us/library/aa211395.aspx
https://msdn.microsoft.com/en-us/library/aa212381.aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa171682.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa266305(v=vs.60).aspx

3. 1.2018 Sub Statement

name. To avoid this kind of conflict, explicitly declare variables. You can use an O p tion Exp lic it statement to force explicit

declaration of variables.

N o te You can't use GoSub, GoTo, or Return to enter or exit a Sub procedure.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266305(v=vs.60).aspx 3/3

https://msdn.microsoft.com/en-us/Nbrary/aa266305(v=vs.60).aspx

3. 1.2018 Sub Statement Example

Visual Basic for Applications Reference

Sub Statement Example
This example uses the Sub statement to define the name, arguments, and code that form the body of a Sub procedure.

' Sub p rocedu re d e f in i t i o n .
' Sub p rocedu re w ith two argum ents.
Sub SubCom puteArea(Length, TheW idth)

Dim Area As Double ' D e c la re lo c a l v a r ia b le .
I f Length = 0 Or TheW idth = 0 Then
' I f e i t h e r argument = 0.

E x it Sub ' E x it Sub im m ed ia te ly .
End I f
Area = Length * TheW idth ' C a lc u la te area o f re c ta n g le .
D e b u g .P r in t A rea ' P r in t A rea to Debug window.

End Sub

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266308(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa266308(v=vs.60).aspx

3. 1.2018 Time Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Time Statement
See Also Example Specifics

Sets the system time.

Syntax

T im e = time

The required time argument is any numeric expression, string expression, or any combination, that can represent a time.

Remarks

If time is a string, T im e attempts to convert it to a time using the time separators you specified for your system. If it can't be

converted to a valid time, an error occurs.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266310(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229901(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266313(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa266310(v=vs.60).aspx

3. 1.2018 Time Statement Example

Visual Basic for Applications Reference

Time Statement Example
This example uses the T im e statement to set the computer system time to a user-defined time.

Dim MyTime
MyTime = #4:35:17 PM# ' A s s ig n a t im e .
Time = MyTime ' Set system tim e to MyTime.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266313(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa266313(v=vs.60).aspx

3. 1.2018 Type Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Type Statement
See Also Example Specifics

Used at module level to define a user-defined data type containing one or more elements.

Syntax

[Private | Public] Type varname
elementname [([subscripts])] A s type
[elementname [([subscripts])] A s type]

End Type

The Type statement syntax has these parts:

Part Descrip tion

Pub lic Optional. Used to declare user-defined types that are available to all procedures in all modules in all
projects.

P rivate Optional. Used to declare user-defined types that are available only within the module where the
declaration is made.

varname Required. Name of the user-defined type; follows standard variable naming conventions.

elementname Required. Name of an element of the user-defined type. Element names also follow standard variable
naming conventions, except that keywords can be used.

subscripts When not explicitly stated in lower, the lower bound of an array is controlled by the O p tion Base
statement. The lower bound is zero if no O p tion Base statement is present.

type Required. Data type of the element; may be Byte, Boolean, Integer, Long, Currency, Single, Double,
Decimal (not currently supported), Date, String (for variable-length strings), S tring * length (for fixed-
length strings), Object, Variant, another user-defined type, or an object type.

Remarks

The Type statement can be used only at module level. Once you have declared a user-defined type using the Type

statement, you can declare a variable of that type anywhere within the scope of the declaration. Use Dim, Private, Public,

ReDim , or S tatic to declare a variable of a user-defined type.

https://msdn.microsoft.com/en-us/Nbrary/aa266315(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229903(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266318(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa171682.aspx
https://msdn.microsoft.com/en-us/library/aa210838.aspx
https://msdn.microsoft.com/en-us/library/aa172172.aspx
https://msdn.microsoft.com/en-us/library/aa171680.aspx
https://msdn.microsoft.com/en-us/library/aa172189.aspx
https://msdn.microsoft.com/en-us/library/aa220732.aspx
https://msdn.microsoft.com/en-us/library/aa220031.aspx
https://msdn.microsoft.com/en-us/library/aa171405.aspx
https://msdn.microsoft.com/en-us/library/aa210393.aspx
https://msdn.microsoft.com/en-us/library/aa212174.aspx
https://msdn.microsoft.com/en-us/library/aa211367.aspx
https://msdn.microsoft.com/en-us/library/aa210841.aspx
https://msdn.microsoft.com/en-us/library/aa212271.aspx
https://msdn.microsoft.com/en-us/library/aa171802.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa266315(v=vs.60).aspx

3. 1.2018 Type Statement

In standard modules and class modules, user-defined types are public by default. This visib ility can be changed using the

Priva te keyword.

Line numbers and line labels aren't allowed in Type...End Type blocks.

User-defined types are often used with data records, which frequently consist o f a number of related elements of different

data types.

The follow ing example shows the use of fixed-size arrays in a user-defined type:

Type S ta teD a ta
C ityC ode (1 To 100) As In te g e r ' D e c la re a s t a t i c a r r a y .
County As S t r in g * 30

End Type

Dim W ash ington(1 To 100) As S ta teD a ta

In the preceding example, S ta teD a ta includes the C ityC ode static array, and the record W ashington has the same structure

as S ta teD a ta .

When you declare a fixed-size array within a user-defined type, its dimensions must be declared with numeric literals or

constants rather than variables.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266315(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa212239.aspx
https://msdn.microsoft.com/en-us/library/aa210316.aspx
https://msdn.microsoft.com/en-us/library/aa210373.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa266315(v=vs.60).aspx

3. 1.2018 Type Statement Example

Visual Basic for Applications Reference

Type Statement Example
This example uses the Type statement to define a user-defined data type. The Type statement is used at the module level

only. If it appears in a class module, a Type statement must be preceded by the keyword Private.

Type EmployeeRecord ' C re a te u s e r -d e f in e d ty p e .
ID As In te g e r ' D e fin e e lem en ts o f data ty p e .
Name As S t r in g * 20
Address As S t r in g * 30
Phone As Long
H ireD a te As Date

End Type
Sub C re a teR eco rd ()

Dim MyRecord As EmployeeRecord ' D e c la re v a r ia b le .

' Assignm ent to EmployeeRecord v a r ia b le must o c cu r in a p ro cedu re .
M yRecord.ID = 12003 ' A s s ig n a v a lu e to an e lem en t.

End Sub

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266318(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa266318(v=vs.60).aspx

3. 1.2018 Unload Statement

This documentation is archived and is not being maintained.

Visual Basic Reference
V isua l S tud io 6.0

Unload Statement
See Also Example

Unloads a form or control from memory.

Syntax

Un load object

The object placeholder is the name of a Form object or control array element to unload.

Remarks

Unloading a form or control may be necessary or expedient in some cases where the memory used is needed for something

else, or when you need to reset properties to their original values.

Before a form is unloaded, the Query_Unload event procedure occurs, followed by the Form_Unload event procedure. Setting

the cancel argument to True in either of these events prevents the form from being unloaded. For M DIForm objects, the

M D IForm object's Query_Unload event procedure occurs, followed by the Query_Unload event procedure and Form_Unload

event procedure for each MDI child form, and finally the M D IForm object's Form_Unload event procedure.

When a form is unloaded, all controls placed on the form at run time are no longer accessible. Controls placed on the form

at design time remain intact; however, any run-time changes to those controls and their properties are lost when the form is

reloaded. All changes to form properties are also lost. Accessing any controls on the form causes it to be reloaded.

N o te When a form is unloaded, only the displayed component is unloaded. The code associated with the form module

remains in memory.

Only control array elements added to a form at run time can be unloaded with the Un load statement. The properties of

unloaded controls are reinitialized when the controls are reloaded.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa445829(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229714(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa445830(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa172352.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa445829(v=vs.60).aspx

3. 1.2018 Unload Statement Example

Visual Basic Reference

Unload Statement Example
This example uses the Un load statement to unload a Form object. To try this example, paste the code into the Declarations

section of a Form object, and then run the example and click the Form object.

P r iv a te Sub Fo rm _C lick ()
Dim Answer, Msg ' D e c la re v a r ia b le .
Un load Form1 ' Unload form .
Msg = "Form1 has been un loaded . Choose Yes to lo ad and "
Msg = Msg & " d is p la y th e fo rm . Choose No to lo ad th e form "
Msg = Msg & "and le a ve i t i n v i s i b l e . "
Answer = MsgBox(Msg, vbYesNo) ' Get u se r re spon se .
I f Answer = vbYes Then ' E v a lu a te answer.

Show ' I f Yes, show form .
E ls e

Load Form1 ' I f No, j u s t lo ad i t .
Msg = "Form1 i s now lo ad ed . Choose OK to d is p la y i t . "
MsgBox Msg ' D is p la y message.
Show ' Show form .

End I f
End Sub

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa445830(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa445830(v=vs.60).aspx

3. 1.2018 While...Wend Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

While...Wend Statement
See Also Example Specifics

Executes a series of statements as long as a given condition is True.

Syntax

W h ile condition
[statements]

W end

The W h ile...W end statement syntax has these parts:

Part Descrip tion

condition Required. Numeric expression or string expression that evaluates to True or False. If condition is Null,
condition is treated as False.

statements Optional. One or more statements executed while condition is True.

Remarks

If condition is True, all statements are executed until the W end statement is encountered. Control then returns to the W h ile

statement and condition is again checked. If condition is still True, the process is repeated. If it is not True, execution resumes

with the statement follow ing the W end statement.

W h ile...W end loops can be nested to any level. Each W end matches the most recent W hile.

T ip The Do...Loop statement provides a more structured and flexible way to perform looping.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266320(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229913(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266323(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa212247.aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/Nbrary/aa266320(v=vs.60).aspx

3. 1.2018 While...Wend Statement Example

Visual Basic for Applications Reference

While...Wend Statement Example
This example uses the W h ile...W end statement to increment a counter variable. The statements in the loop are executed as

long as the condition evaluates to True.

Dim Counter
Coun te r = 0 ' I n i t i a l i z e v a r ia b le .
W h ile Coun te r < 20 ' T e s t v a lu e o f C oun te r.

Coun te r = Coun te r + 1 ' Increm ent Coun te r.
Wend ' End W h ile lo op when Coun te r > 19.
D e b u g .P r in t Coun te r ' P r in t s 20 in the Immediate window.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa266323(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa266323(v=vs.60).aspx

3. 1.2018 Width # Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Width # Statement
See Also Example Specifics

Assigns an output line width to a file opened using the Open statement.

Syntax

W id th #filenumber, width

The W id th # statement syntax has these parts:

Part Descrip tion

filenumber Required. Any valid file number.

width Required. Numeric expression in the range 0255, inclusive, that indicates how many characters appear on a
line before a new line is started. If width equals 0, there is no limit to the length of a line. The default value
for width is 0.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266324(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa229918(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266327(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/library/aa266324(v=vs.60).aspx

3. 1.2018 Width # Statement Example

Visual Basic for Applications Reference

Width # Statement Example
This example uses the W id th # statement to set the output line width for a file.

Dim I
Open "TESTFILE" For Output As #1 ' Open f i l e f o r o u tp u t.
VBA.W idth 1 , 5 ' Set ou tpu t l i n e w id th to 5.
For I = 0 To 9 ' Loop 10 t im e s .

P r in t #1, Chr(48 + I) ; ' P r in t s f i v e c h a ra c te rs per l i n e .
Next I
C lo se #1 ' C lo se f i l e .

© 2018 Microsoft

https://msdn.microsoftcom/en-us/Nbrary/aa266327(v=vs.60).aspx 1/1

https://msdn.microsoftcom/en-us/Nbrary/aa266327(v=vs.60).aspx

3. 1.2018 With Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

With Statement
See Also Example Specifics

Executes a series of statements on a single object or a user-defined type.

Syntax

W ith object
[statements]

End W ith

The W ith statement syntax has these parts:

Part Descrip tion

object Required. Name of an object or a user-defined type.

statements Optional. One or more statements to be executed on object.

Remarks

The W ith statement allows you to perform a series of statements on a specified object without requalifying the name of the

object. For example, to change a number of different properties on a single object, place the property assignment statements

within the W ith control structure, referring to the object once instead of referring to it with each property assignment. The

follow ing example illustrates use of the W ith statement to assign values to several properties of the same object.

W ith MyLabel
.H e ig h t = 2000
.W idth = 2000
.C a p t io n = "T h is i s M yLabe l"

End W ith

N o te Once a W ith block is entered, object can't be changed. As a result, you can't use a single W ith statement to affect a

number of different objects.

You can nest W ith statements by placing one W ith block within another. However, because members of outer W ith blocks

are masked within the inner W ith blocks, you must provide a fully qualified object reference in an inner W ith block to any

member of an object in an outer W ith block.

N o te In general, it's recommended that you don't jum p into or out o f W ith blocks. If statements in a W ith block are

executed, but either the W ith or End W ith statement is not executed, a temporary variable containing a reference to the

object remains in memory until you exit the procedure.

https://msdn.microsoft.com/en-us/library/aa266330(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa243354(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa263669.aspx
https://msdn.microsoft.com/en-us/library/aa212247.aspx
https://msdn.microsoft.com/en-us/library/aa172196.aspx
https://msdn.microsoft.com/en-us/library/aa266330(v=vs.60).aspx

3. 1.2018 With Statement Example

With Statement Example
This content is no longer actively maintained. It is provided as is, for anyone who may still be using these technologies, with

no warranties or claims of accuracy with regard to the most recent product version or service release.

This example creates a formatted multiplication table in cells A1:K11 on Sheet1.

Set dataTab leRange = W o rk shee ts ("Shee t1 ").R ange ("A 1 :K 11 ")
Set ro w In p u tC e ll = W o rk shee ts ("Shee t1 ").R ange ("A 12 ")
Set co lu m n In p u tC e ll = W o rk sh ee ts ("S h ee t1 ").R an ge ("A 13 ")

W o rk sh ee ts ("S h ee t1 ") .R an g e ("A 1 ") .F o rm u la = "=A12*A13"
For i = 2 To 11

W o rkshee ts(',S hee t1 ,,) . C e l l s (i , 1) = i - 1
W o rk s h e e ts ("S h e e t1 ") .C e lls (1 , i) = i - 1

Next i
d a taT ab leR ange .Tab le ro w In p u tC e ll, co lu m n In p u tC e ll
W ith W o rk sh e e ts ("S h ee t1 ") .R a n g e ("A 1 ") .C u rre n tR eg io n

.R o w s (1) .F o n t.B o ld = True

.C o lu m n s (1) .F o n t.B o ld = True

.C o lu m n s .A u to F it
End W ith

© 2018 Microsoft

https://msdn.microsoft.com/en-us/Nbrary/aa263669.aspx 1/1

https://msdn.microsoft.com/en-us/Nbrary/aa263669.aspx

3. 1.2018 Write # Statement

This documentation is archived and is not being maintained.

Visual Basic for Applications Reference
V isua l S tud io 6.0

Write # Statement
See Also Example Specifics

Writes data to a sequential file.

Syntax

W rite #filenumber, [outputlist]

The W rite # statement syntax has these parts:

Part Descrip tion

filenumber Required. Any valid file number.

outputlist Optional. One or more comma-delim ited numeric expressions or string expressions to write to a file.

Remarks

Data written with W rite # is usually read from a file with Input #.

If you om it outputlist and include a comma after filenumber, a blank line is printed to the file. Multiple expressions can be

separated with a space, a semicolon, or a comma. A space has the same effect as a semicolon.

When W rite # is used to write data to a file, several universal assumptions are followed so the data can always be read and

correctly interpreted using Input #, regardless of locale:

• Numeric data is always written using the period as the decimal separator.

• For Boolean data, either #TRUE# or #FALSE# is printed. The True and False keywords are not translated, regardless of

locale.

• Date data is written to the file using the universal date format. When either the date or the time component is missing
or zero, only the part provided gets written to the file.

• Nothing is written to the file if outputlist data is Empty. However, for Null data, #NULL# is written.

• If outputlist data is N u ll data, #NULL# is written to the file.

• For Error data, the output appears as #ERROR errorcode# . The Error keyword is not translated, regardless of locale.

Unlike the P rin t # statement, the W rite # statement inserts commas between items and quotation marks around strings as

they are written to the file. You don't have to put explicit delimiters in the list. W r ite # inserts a newline character, that is, a

https://msdn.microsoft.com/en-us/library/aa266338(v=vs.60).aspx 1/2

https://msdn.microsoft.com/en-us/library/aa229922(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa266342(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/aa171789.aspx
https://msdn.microsoft.com/en-us/library/aa212283.aspx
https://msdn.microsoft.com/en-us/library/aa210841.aspx
https://msdn.microsoft.com/en-us/library/aa211377.aspx
https://msdn.microsoft.com/en-us/library/aa171778.aspx
https://msdn.microsoft.com/en-us/library/aa266338(v=vs.60).aspx

3. 1.2018 Write # Statement

carriage returnlinefeed (Chr(13) + Chr(10)), after it has written the final character in outputlist to the file.

N o te You should not write strings that contain embedded quotation marks, for example, " 1 ,2 " "X " for use with the Input #

statement: Input # parses this string as two complete and separate strings.

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266338(v=vs.60).aspx 2/2

https://msdn.microsoft.com/en-us/library/aa266338(v=vs.60).aspx

3. 1.2018 Write # Statement Example

Visual Basic for Applications Reference

Write # Statement Example
This example uses the W rite # statement to write raw data to a sequential file.

Open "TESTFILE" For Output As #1 ' Open f i l e f o r o u tp u t.
W r ite #1, " H e llo W o rld ", 234 ' W r ite com m a-de lim ited d a ta .
W r ite #1, ' W r ite b la n k l in e .

Dim M yBool, MyDate, M yN u ll, M yE rro r
' A s s ig n Boo lean , Date , N u l l , and E r ro r v a lu e s .
MyBool = F a ls e : MyDate = # February 12, 1969# : M yN u ll = N u l l
M yE rro r = CVErr(32767)
' Boo lean data i s w r it t e n as #TRUE# o r #FALSE#. Date l i t e r a l s are
' w r it t e n in u n iv e r s a l date fo rm a t, f o r exam ple, #1994-07-13#
're p re s e n ts J u ly 13, 1994. N u l l da ta i s w r it t e n as #NULL#.

' E r ro r data i s w r it t e n as #ERROR e rro rcode# .
W r ite #1, MyBool ; " i s a Boo lean v a lu e "
W r ite #1, MyDate ; " i s a da te "
W r ite #1, M yN u ll ; " i s a n u l l v a lu e "
W r ite #1, M yE rro r ; " i s an e r r o r v a lu e "
C lo se #1 ' C lo se f i l e .

© 2018 Microsoft

https://msdn.microsoft.com/en-us/library/aa266342(v=vs.60).aspx 1/1

https://msdn.microsoft.com/en-us/library/aa266342(v=vs.60).aspx

